930 resultados para estrogen receptor alpha
Resumo:
Estrogen receptor β (ERβ) is expressed at high levels in both neurons and glial cells of the central nervous system. The development of ERβ knockout (BERKO) mice has provided a model to study the function of this nuclear receptor in the brain. We have found that the brains of BERKO mice show several morphological abnormalities. There is a regional neuronal hypocellularity in the brain, with a severe neuronal deficit in the somatosensory cortex, especially layers II, III, IV, and V, and a remarkable proliferation of astroglial cells in the limbic system but not in the cortex. These abnormalities are evident as early as 2 mo of age in BERKO mice. As BERKO mice age, the neuronal deficit becomes more pronounced, and, by 2 yr of age, there is degeneration of neuronal cell bodies throughout the brain. This is particularly evident in the substantia nigra. We conclude that ERβ is necessary for neuronal survival and speculate that this gene could have an important influence on the development of degenerative diseases of the central nervous system, such as Alzheimer's disease and Parkinson's disease, as well as those resulting from trauma and stroke in the brain.
Resumo:
The evolution of novelty in tightly integrated biological systems, such as hormones and their receptors, seems to challenge the theory of natural selection: it has not been clear how a new function for any one part (such as a ligand) can be selected for unless the other members of the system (e.g., a receptor) are already present. Here I show—based on identification and phylogenetic analysis of steroid receptors in basal vertebrates and reconstruction of the sequences and functional attributes of ancestral proteins—that the first steroid receptor was an estrogen receptor, followed by a progesterone receptor. Genome mapping and phylogenetic analyses indicate that the full complement of mammalian steroid receptors evolved from these ancient receptors by two large-scale genome expansions, one before the advent of jawed vertebrates and one after. Specific regulation of physiological processes by androgens and corticoids are relatively recent innovations that emerged after these duplications. These findings support a model of ligand exploitation in which the terminal ligand in a biosynthetic pathway is the first for which a receptor evolves; selection for this hormone also selects for the synthesis of intermediates despite the absence of receptors, and duplicated receptors then evolve affinity for these substances. In this way, novel hormone-receptor pairs are created, and an integrated system of increasing complexity elaborated. This model suggests that ligands for some “orphan” receptors may be found among intermediates in the synthesis of ligands for phylogenetically related receptors.
Resumo:
In normal rats and mice, immunostaining with specific antibodies revealed that nuclei of most prostatic epithelial cells harbor estrogen receptor β (ERβ). In rat ventral prostate, 530- and 549-aa isoforms of the receptor were identified. These sediment in the 4S region of low-salt sucrose gradients, indicating that prostatic ERβ does not contain the same protein chaperones that are associated with ERα. Estradiol (E2) binding and ERβ immunoreactivity coincide on the gradient, with no indication of ERα. In prostates from mice in which the ERβ gene has been inactivated (BERKO), androgen receptor (AR) levels are elevated, and the tissue contains multiple hyperplastic foci. Most epithelial cells express the proliferation antigen Ki-67. In contrast, prostatic epithelium from wild-type littermates is single layered with no hyperplasia, and very few cells express Ki-67. Rat ventral prostate contains an estrogenic component, which comigrates on HPLC with the testosterone metabolite 5α-androstane-3β,17β-diol (3βAdiol). This compound, which competes with E2 for binding to ERβ and elicits an estrogenic response in the aorta but not in the pituitary, decreases the AR content in prostates of wild-type mice but does not affect the elevated levels seen in ERβ knockout (BERKO) mice. Thus ERβ, probably as a complex with 3βAdiol, is involved in regulating the AR content of the rodent prostate and in restraining epithelial growth. These findings suggest that ligands specific for ERβ may be useful in the prevention and/or clinical management of prostatic hyperplasia and neoplasia.
Resumo:
Past studies have shown that epidermal growth factor (EGF) is able to mimic the uterotropic effects of estrogen in the rodent. These studies have suggested a "cross-talk" model in which EGF receptor (EGF-R) signaling results in activation of nuclear estrogen receptor (ER) and its target genes in an estrogen-independent manner. Furthermore, in vitro studies have indicated the requirement for ER in this mechanism. To verify the requirement for ER in an in vivo system, EGF effects were studied in the uteri of ER knockout (ERKO) mice, which lack functional ER. The EGF-R levels, autophosphorylation, and c-fos induction were observed at equivalent levels in both genotypes indicating that removal of ER did not disrupt the EGF responses. Induction of DNA synthesis and the progesterone receptor gene in the uterus were measured after EGF treatment of both ERKO and wild-type animals. Wild-type mice showed increases of 4.3-fold in DNA synthesis, as well as an increase in PR mRNA after EGF treatment. However, these responses were absent in ERKO mice, confirming that the estrogen-like effects of EGF in the mouse uterus do indeed require the ER. These data conclusively demonstrate the coupling of EGF and ER signaling pathways in the rodent reproductive tract.
Resumo:
The estrogen receptor (ER) is a ligand-dependent transcription factor that regulates expression of target genes in response to estrogen in concert with other cellular signaling pathways. This suggests that the mechanism by which ER transmits an activating signal to the general transcription machinery may include factors that integrate these diverse signals. We have previously characterized the estrogen receptor-associated protein, ERAP160, as a factor that complexes with ER in an agonist-dependent manner. We have now found that the transcriptional coactivator p300 associates with agonist bound ER and augments ligand-dependent activation by ER. Our studies show that an ER coactivator complex involves a direct hormone-dependent interaction between ER and ERAP160, resulting in the recruitment of p300. In addition, antibodies directed against the cloned steroid receptor coactivator 1 (SRC1) recognize ERAP160. The known role of p300 in multiple signal transduction pathways, including those involving the second messenger cAMP, suggests p300 functions as a point of integration between ER and these other pathways.
Resumo:
Hippocampal pyramidal cells, receiving domain specific GABAergic inputs, express up to 10 different subunits of the gamma-aminobutyric acid type A (GABAA) receptor, but only 3 different subunits are needed to form a functional pentameric channel. We have tested the hypothesis that some subunits are selectively located at subsets of GABAergic synapses. The alpha 1 subunit has been found in most GABAergic synapses on all postsynaptic domains of pyramidal cells. In contrast, the alpha 2 subunit was located only in a subset of synapses on the somata and dendrites, but in most synapses on axon initial segments innervated by axo-axonic cells. The results demonstrate that molecular specialization in the composition of postsynaptic GABAA receptor subunits parallels GABAergic cell specialization in targeting synapses to a specific domain of postsynaptic cortical neurons.
Analysis of estrogen receptor transcriptional enhancement by a nuclear hormone receptor coactivator.
Resumo:
The estrogen receptor (ER), a member of a large superfamily of nuclear hormone receptors, is a ligand-inducible transcription factor that regulates the expression of estrogen-responsive genes. The ER, in common with other members of this superfamily, contains two transcription activation functions (AFs)--one located in the amino-terminal region (AF-1) and the second located in the carboxyl-terminal region (AF-2). In most cell contexts, the synergistic activity of AF-1 and AF-2 is required for full estradiol (E2)-stimulated activity. We have previously shown that a ligand-dependent interaction between the two AF-containing regions of ER was promoted by E2 and the antiestrogen trans-hydroxytamoxifen (TOT). This interaction, however, was transcriptionally productive only in the presence of E2. To explore a possible role of steroid receptor coactivators in transcriptional synergism between AF-1 and AF-2, we expressed the amino terminal (AF-1-containing) and carboxyl-terminal (AF-2-containing) regions of ER as separate polypeptides in mammalian cells, along with the steroid receptor coactivator-1 protein (SRC-1). We demonstrate that SRC-1, which has been shown to significantly increase ER transcriptional activity, enhanced the interaction, mediated by either E2 or TOT, between the AF-1-containing and AF-2-containing regions of the ER. However, this enhanced interaction resulted in increased transcriptional effectiveness only with E2 and not with TOT, consistent with the effects of SRC-1 on the full-length receptor. Our results suggest that after ligand binding, SRC-1 may act, in part, as an adapter protein that promotes the integration of amino- and carboxyl-terminal receptor functions, allowing for full receptor activation. Potentially, SRC-1 may be capable of enhancing the transcriptional activity of related nuclear receptor superfamily members by facilitating the productive association of the two AF-containing regions in these receptors.
Resumo:
Upon stimulation with anti-CD3, suppressor T-cell (Ts) hybridomas and homologous transfectants of T-cell receptor a (TCRalpha) cDNA in the T-cell hybridoma formed a 55-kDa TCRalpha chain derivative that bound both the monoclonal anti-TCRalpha chain and polyclonal antibodies against glycosylation inhibiting factor (GIF). The peptide is a subunit of antigen-specific suppressor T-cell factor (TsF), and is considered to be a posttranslationally-formed conjugate of TCRalpha chain with GIF peptide. The TCRalpha derivative is synthesized by the transfectant after stimulation with anti-CD3, and not derived from TCR present on the cell surface. Stimulation of the stable homologous transfectants with anti-CD3 induced translocation of the 13-kDa GIF peptide into endoplasmic reticulum (ER). When a helper Ts hybridoma or a stable transfectant of the same TCRalpha cDNA in a helper cell-derived TCRalpha- clone was stimulated with anti-CD3, translocation of GIF peptide was not detected, and these cells failed to secrete a TCRalpha derivative. However, further transfection of a chimeric cDNA encoding a procalcitonin-GIF fusion protein into the helper cell-derived stable transfectant of TCRalpha cDNA resulted in translocation of the GIF protein and formation of bioactive 55-kDa GIF. The results indicated that translocation of GIF peptide through ER is unique for Ts cells, and that this process is essential for the formation/secretion of the soluble form derivative of TCRalpha chain by T cells.
Resumo:
Myasthenia gravis is an autoimmune disease in which T cells specific to epitopes of the autoantigen, the human acetylcholine receptor, play a role. We identified two peptides, p195-212 and p259-271, from the alpha subunit of the receptor, which bound to major histocompatibility complex (MHC) class II molecules on antigen-presenting cells (APCs) from peripheral blood lymphocytes of myasthenia gravis patients and stimulated lymphocytes of >80% of the patients. We have prepared analogs of these myasthenogenic peptides and tested their ability to bind to MHC class II determinants and to interfere specifically with T-cell stimulation. We first determined relative binding efficiency of the myasthenogenic peptides and their analogs to APCs of patients. We found that single substituted analogs of p195-212 (Ala-207) and p259-271 (Lys-262) could bind to human MHC molecules on APCs as efficiently as the original peptides. Moreover, dual analogs containing the two single substituted analogs in one stretch (either sequentially, Ala-207/Lys-262, or reciprocally, Lys-262/Ala-207) could also bind to APCs of patients, including those that failed to bind one of the single substituted analogs. The single substituted analogs significantly inhibited T-cell stimulation induced by their respective myasthenogenic peptides in >95% of the patients. The dual analogs were capable of inhibiting stimulation induced by either of the peptides: They inhibited the response to p195-212 and p259-271 in >95% and >90% of the patients, respectively. Thus, the dual analogs are good candidates for inhibition of T-cell responses of myasthenia gravis patients and might have therapeutic potential.
Resumo:
Promyelocytic leukemia zinc finger-retinoic acid receptor a (PLZF-RARalpha), a fusion receptor generated as a result of a variant t(11;17) chromosomal translocation that occurs in a small subset of acute promyelocytic leukemia (APL) patients, has been shown to display a dominant-negative effect against the wild-type RARalpha/retinoid X receptor alpha (RXRalpha). We now show that its N-terminal region (called the POZ-domain), which mediates protein-protein interaction as well as specific nuclear localization of the wild-type PLZF and chimeric PLZF-RARalpha proteins, is primarily responsible for this activity. To further investigate the mechanisms of PLZF-RARalpha action, we have also studied its ligand-receptor, protein-protein, and protein-DNA interaction properties and compared them with those of the promyelocytic leukemia gene (PML)-RARalpha, which is expressed in the majority of APLs as a result of t(15;17) translocation. PLZF-RARalpha and PML-RARalpha have essentially the same ligand-binding affinities and can bind in vitro to retinoic acid response elements (RAREs) as homodimers or heterodimers with RXRalpha. PLZF-RARalpha homodimerization and heterodimerization with RXRalpha were primarily mediated by the POZ-domain and RARalpha sequence, respectively. Despite having identical RARalpha sequences, PLZF-RARalpha and PML-RARalpha homodimers recognized with different affinities distinct RAREs. Furthermore, PLZF-RARalpha could heterodimerize in vitro with the wild-type PLZF, suggesting that it may play a role in leukemogenesis by antagonizing actions of not only the retinoid receptors but also the wild-type PLZF and possibly other POZ-domain-containing regulators. These different protein-protein interactions and the target gene specificities of PLZF-RARalpha and PML-RARalpha may underlie, at least in part, the apparent resistance of APL with t(11;17) to differentiation effects of all-trans-retinoic acid.
Resumo:
We previously showed that estrogen receptor (ER) mRNA is present in preimplantation mouse embryos. The apparent synthesis of ER mRNA by the blastocyst at the time of implantation when estrogen is required was of special interest. A demonstration of the presence of ER protein would support the idea that estrogen can act directly on the embryo. The mouse embryo at the blastocyst stage is differentiated into two cell types, the trophectoderm and the inner cell mass. To determine whether ER mRNA is translated into ER protein and its cell-specific distribution, immunocytochemical analyses were performed in mouse blastocysts. ER protein was detected in all cell types of the normal, dormant, or activated blastocyst. To trace the fate of ER in these cell types, immunocytochemistry was performed in implanting blastocysts and early egg cylinder stage embryos developed in culture. Again, ER was detected in all cells of the implanting blastocyst. At the early egg cylinder stage, continued expression of ER was observed in cells derived from the inner cell mass or the trophoblast. In trophoblast giant cells, ER was concentrated in small regions of the nucleus, possibly the nucleoli, which was similar to that observed in dormant and activated blastocysts. The embryonic expression of ER at such early stages in a broad array of cells suggests that ER may have a general role during early development.
Resumo:
The pre-T-cell receptor, composed of the T-cell receptor (TCR) beta chain (TCRbeta), pre-Talpha (pTalpha) chain, and CD3 molecules, has been postulated to be a transducer of signals during the early stages of T-cell development. To examine the function of the transmembrane pTalpha chain during tbymocyte development, we generated pTalpha-/- embryonic stem cells and assayed their ability to differentiate into lymphoid cells in vivo after injection into recombination-activating gene (RAG)-2-deficient blastocysts. Thymocytes representing all stages of T-cell differentiation were detected in the thymus of pTalpha-/- chimeric mice, indicating that thymocyte development can occur without pTalpha. However, greatly reduced thymocyte numbers and substantially increased percentages of both CD4-CD8- thymocytes and TCRgammadelta+ thymocytes suggest that pTalpha plays a critical role in thymocyte expansion. To investigate the role of the pTalpha chain in allelic exclusion at the TCRbeta locus, a functionally rearranged TCRbeta minigene was introduced into pTalpha-/- and pTalpha+/- embryonic stem cells, which were subsequently assayed by RAG-2-deficient blastocyst complementation. In the absence of pTalpha, expression of the transgenic TCRbeta inhibited rearrangement of the endogenous TCRbeta locus to an extent similar to that seen in normal TCRbeta transgenic mice, suggesting that pTalpha may not be required for signaling allelic exclusion at the TCRbeta locus.
Resumo:
Identification of individual major genes affecting quantitative traits in livestock species has been limited to date. By using a candidate gene approach and a divergent breed cross involving the Chinese Meishan pig, we have shown that a specific allele of the estrogen receptor (ER) locus is associated with increased litter size. Female pigs from synthetic lines with a 50% Meishan background that were homozygous for this beneficial allele produced 2.3 more pigs in first parities and 1.5 more pigs averaged over all parities than females from the same synthetic lines and homozygous for the undesirable allele. This beneficial ER allele was also found in pigs with Large White breed ancestory. Analysis of females with Large White breed background showed an advantage for females homozygous for the beneficial allele as compared to females homozygous for the other allele of more than 1 total pig born. Analyses of growth performance test records detected no significant unfavorable associations of the beneficial allele with growth and developmental traits. Mapping of the ER gene demonstrated that the closest known genes or markers were 3 centimorgans from ER. To our knowledge, one of these, superoxide dismutase gene (SOD2), was mapped for the first time in the pig. Analysis of ER and these linked markers indicated that ER is the best predictor of litter size differences. Introgression of the beneficial allele into commercial pig breeding lines, in which the allele was not present, and marker-assisted selection for the beneficial allele in lines with Meishan and Large White background have begun.
Resumo:
In immature T cells the T-cell receptor (TCR) beta-chain gene is rearranged and expressed before the TCR alpha-chain gene. At this stage TCR beta chain can form disulfide-linked heterodimers with the pre-T-cell receptor alpha chain (pTalpha). Using the recently isolated murine pTalpha cDNA as a probe, we have isolated the human pTalpha cDNA. The complete nucleotide sequence predicts a mature protein of 282 aa consisting of an extracellular immunoglobulin-like domain, a connecting peptide, a transmembrane region, and a long cytoplasmic tail. Amino acid sequence comparison of human pTalpha with the mouse pTalpha molecule reveals high sequence homology in the extracellular as well as the transmembrane region. In contrast, the cytoplasmic region differs in amino acid composition and in length from the murine homologue. The human pTalpha gene is expressed in immature but not mature T cells and is located at the p21.2-p12 region of the short arm of chromosome 6.