906 resultados para engineering design process
Resumo:
2000 Mathematics Subject Classification: 62J05, 62J10, 62F35, 62H12, 62P30.
Resumo:
Antenna design is an iterative process in which structures are analyzed and changed to comply with certain performance parameters required. The classic approach starts with analyzing a "known" structure, obtaining the value of its performance parameter and changing this structure until the "target" value is achieved. This process relies on having an initial structure, which follows some known or "intuitive" patterns already familiar to the designer. The purpose of this research was to develop a method of designing UWB antennas. What is new in this proposal is that the design process is reversed: the designer will start with the target performance parameter and obtain a structure as the result of the design process. This method provided a new way to replicate and optimize existing performance parameters. The base of the method was the use of a Genetic Algorithm (GA) adapted to the format of the chromosome that will be evaluated by the Electromagnetic (EM) solver. For the electromagnetic study we used XFDTD™ program, based in the Finite-Difference Time-Domain technique. The programming portion of the method was created under the MatLab environment, which serves as the interface for converting chromosomes, file formats and transferring of data between the XFDTD™ and GA. A high level of customization had to be written into the code to work with the specific files generated by the XFDTD™ program. Two types of cost functions were evaluated; the first one seeking broadband performance within the UWB band, and the second one searching for curve replication of a reference geometry. The performance of the method was evaluated considering the speed provided by the computer resources used. Balance between accuracy, data file size and speed of execution was achieved by defining parameters in the GA code as well as changing the internal parameters of the XFDTD™ projects. The results showed that the GA produced geometries that were analyzed by the XFDTD™ program and changed following the search criteria until reaching the target value of the cost function. Results also showed how the parameters can change the search criteria and influence the running of the code to provide a variety of geometries.
Resumo:
This dissertation established a software-hardware integrated design for a multisite data repository in pediatric epilepsy. A total of 16 institutions formed a consortium for this web-based application. This innovative fully operational web application allows users to upload and retrieve information through a unique human-computer graphical interface that is remotely accessible to all users of the consortium. A solution based on a Linux platform with My-SQL and Personal Home Page scripts (PHP) has been selected. Research was conducted to evaluate mechanisms to electronically transfer diverse datasets from different hospitals and collect the clinical data in concert with their related functional magnetic resonance imaging (fMRI). What was unique in the approach considered is that all pertinent clinical information about patients is synthesized with input from clinical experts into 4 different forms, which were: Clinical, fMRI scoring, Image information, and Neuropsychological data entry forms. A first contribution of this dissertation was in proposing an integrated processing platform that was site and scanner independent in order to uniformly process the varied fMRI datasets and to generate comparative brain activation patterns. The data collection from the consortium complied with the IRB requirements and provides all the safeguards for security and confidentiality requirements. An 1-MR1-based software library was used to perform data processing and statistical analysis to obtain the brain activation maps. Lateralization Index (LI) of healthy control (HC) subjects in contrast to localization-related epilepsy (LRE) subjects were evaluated. Over 110 activation maps were generated, and their respective LIs were computed yielding the following groups: (a) strong right lateralization: (HC=0%, LRE=18%), (b) right lateralization: (HC=2%, LRE=10%), (c) bilateral: (HC=20%, LRE=15%), (d) left lateralization: (HC=42%, LRE=26%), e) strong left lateralization: (HC=36%, LRE=31%). Moreover, nonlinear-multidimensional decision functions were used to seek an optimal separation between typical and atypical brain activations on the basis of the demographics as well as the extent and intensity of these brain activations. The intent was not to seek the highest output measures given the inherent overlap of the data, but rather to assess which of the many dimensions were critical in the overall assessment of typical and atypical language activations with the freedom to select any number of dimensions and impose any degree of complexity in the nonlinearity of the decision space.
Resumo:
The total time a customer spends in the business process system, called the customer cycle-time, is a major contributor to overall customer satisfaction. Business process analysts and designers are frequently asked to design process solutions with optimal performance. Simulation models have been very popular to quantitatively evaluate the business processes; however, simulation is time-consuming and it also requires extensive modeling experiences to develop simulation models. Moreover, simulation models neither provide recommendations nor yield optimal solutions for business process design. A queueing network model is a good analytical approach toward business process analysis and design, and can provide a useful abstraction of a business process. However, the existing queueing network models were developed based on telephone systems or applied to manufacturing processes in which machine servers dominate the system. In a business process, the servers are usually people. The characteristics of human servers should be taken into account by the queueing model, i.e. specialization and coordination. ^ The research described in this dissertation develops an open queueing network model to do a quick analysis of business processes. Additionally, optimization models are developed to provide optimal business process designs. The queueing network model extends and improves upon existing multi-class open-queueing network models (MOQN) so that the customer flow in the human-server oriented processes can be modeled. The optimization models help business process designers to find the optimal design of a business process with consideration of specialization and coordination. ^ The main findings of the research are, first, parallelization can reduce the cycle-time for those customer classes that require more than one parallel activity; however, the coordination time due to the parallelization overwhelms the savings from parallelization under the high utilization servers since the waiting time significantly increases, thus the cycle-time increases. Third, the level of industrial technology employed by a company and coordination time to mange the tasks have strongest impact on the business process design; as the level of industrial technology employed by the company is high; more division is required to improve the cycle-time; as the coordination time required is high; consolidation is required to improve the cycle-time. ^
Resumo:
This dissertation introduces a novel automated book reader as an assistive technology tool for persons with blindness. The literature shows extensive work in the area of optical character recognition, but the current methodologies available for the automated reading of books or bound volumes remain inadequate and are severely constrained during document scanning or image acquisition processes. The goal of the book reader design is to automate and simplify the task of reading a book while providing a user-friendly environment with a realistic but affordable system design. This design responds to the main concerns of (a) providing a method of image acquisition that maintains the integrity of the source (b) overcoming optical character recognition errors created by inherent imaging issues such as curvature effects and barrel distortion, and (c) determining a suitable method for accurate recognition of characters that yields an interface with the ability to read from any open book with a high reading accuracy nearing 98%. This research endeavor focuses in its initial aim on the development of an assistive technology tool to help persons with blindness in the reading of books and other bound volumes. But its secondary and broader aim is to also find in this design the perfect platform for the digitization process of bound documentation in line with the mission of the Open Content Alliance (OCA), a nonprofit Alliance at making reading materials available in digital form. The theoretical perspective of this research relates to the mathematical developments that are made in order to resolve both the inherent distortions due to the properties of the camera lens and the anticipated distortions of the changing page curvature as one leafs through the book. This is evidenced by the significant increase of the recognition rate of characters and a high accuracy read-out through text to speech processing. This reasonably priced interface with its high performance results and its compatibility to any computer or laptop through universal serial bus connectors extends greatly the prospects for universal accessibility to documentation.
Design optimization of modern machine drive systems for maximum fault tolerant and optimal operation
Resumo:
Modern electric machine drives, particularly three phase permanent magnet machine drive systems represent an indispensable part of high power density products. Such products include; hybrid electric vehicles, large propulsion systems, and automation products. Reliability and cost of these products are directly related to the reliability and cost of these systems. The compatibility of the electric machine and its drive system for optimal cost and operation has been a large challenge in industrial applications. The main objective of this dissertation is to find a design and control scheme for the best compromise between the reliability and optimality of the electric machine-drive system. The effort presented here is motivated by the need to find new techniques to connect the design and control of electric machines and drive systems. ^ A highly accurate and computationally efficient modeling process was developed to monitor the magnetic, thermal, and electrical aspects of the electric machine in its operational environments. The modeling process was also utilized in the design process in form finite element based optimization process. It was also used in hardware in the loop finite element based optimization process. The modeling process was later employed in the design of a very accurate and highly efficient physics-based customized observers that are required for the fault diagnosis as well the sensorless rotor position estimation. Two test setups with different ratings and topologies were numerically and experimentally tested to verify the effectiveness of the proposed techniques. ^ The modeling process was also employed in the real-time demagnetization control of the machine. Various real-time scenarios were successfully verified. It was shown that this process gives the potential to optimally redefine the assumptions in sizing the permanent magnets of the machine and DC bus voltage of the drive for the worst operating conditions. ^ The mathematical development and stability criteria of the physics-based modeling of the machine, design optimization, and the physics-based fault diagnosis and the physics-based sensorless technique are described in detail. ^ To investigate the performance of the developed design test-bed, software and hardware setups were constructed first. Several topologies of the permanent magnet machine were optimized inside the optimization test-bed. To investigate the performance of the developed sensorless control, a test-bed including a 0.25 (kW) surface mounted permanent magnet synchronous machine example was created. The verification of the proposed technique in a range from medium to very low speed, effectively show the intelligent design capability of the proposed system. Additionally, to investigate the performance of the developed fault diagnosis system, a test-bed including a 0.8 (kW) surface mounted permanent magnet synchronous machine example with trapezoidal back electromotive force was created. The results verify the use of the proposed technique under dynamic eccentricity, DC bus voltage variations, and harmonic loading condition make the system an ideal case for propulsion systems.^
Resumo:
UK engineering standards are regulated by the Engineering Council (EC) using a set of generic threshold competence standards which all professionally registered Chartered Engineers in the UK must demonstrate, underpinned by a separate academic qualification at Masters Level. As part of an EC-led national project for the development of work-based learning (WBL) courses leading to Chartered Engineer registration, Aston University has started an MSc Professional Engineering programme, a development of a model originally designed by Kingston University, and build around a set of generic modules which map onto the competence standards. The learning pedagogy of these modules conforms to a widely recognised experiential learning model, with refinements incorporated from a number of other learning models. In particular, the use of workplace mentoring to support the development of critical reflection and to overcome barriers to learning is being incorporated into the learning space. This discussion paper explains the work that was done in collaboration with the EC and a number of Professional Engineering Institutions, to design a course structure and curricular framework that optimises the engineering learning process for engineers already working across a wide range of industries, and to address issues of engineering sustainability. It also explains the thinking behind the work that has been started to provide an international version of the course, built around a set of globalised engineering competences. © 2010 W J Glew, E F Elsworth.
Resumo:
This study examines the effect of individual character types in design teams through case studies at ARUP associates and five United Kingdom university design degree programmes. By observing an individual's approach and contribution within a team, patterns of design behaviour are highlighted and compared within the industrial and academic examples. Initial findings have identified discreet differences in design approach and ways of working. By identifying these initial character clusters, design behaviour can be predicted to help teams and individuals to strengthen their design process. This research brings together: 1. The design process and how engineering and design teams work to solve problems. 2. The natural characteristics of individuals and how they approach problems. This difference of approach can be viewed in relation to the design process where engineers and designers will recognise their preference for certain stages of the design process. This study suggests that these individual preferences are suited to different stages of the design process, and that industry uses teams to ensure a broad range of views, an approach design education would do well to apply by establishing collaborative input in the design process.
Resumo:
This dissertation documents the results of a theoretical and numerical study of time dependent storage of energy by melting a phase change material. The heating is provided along invading lines, which change from single-line invasion to tree-shaped invasion. Chapter 2 identifies the special design feature of distributing energy storage in time-dependent fashion on a territory, when the energy flows by fluid flow from a concentrated source to points (users) distributed equidistantly on the area. The challenge in this chapter is to determine the architecture of distributed energy storage. The chief conclusion is that the finite amount of storage material should be distributed proportionally with the distribution of the flow rate of heating agent arriving on the area. The total time needed by the source stream to ‘invade’ the area is cumulative (the sum of the storage times required at each storage site), and depends on the energy distribution paths and the sequence in which the users are served by the source stream. Chapter 3 shows theoretically that the melting process consists of two phases: “invasion” thermal diffusion along the invading line, which is followed by “consolidation” as heat diffuses perpendicularly to the invading line. This chapter also reports the duration of both phases and the evolution of the melt layer around the invading line during the two-dimensional and three-dimensional invasion. It also shows that the amount of melted material increases in time according to a curve shaped as an S. These theoretical predictions are validated by means of numerical simulations in chapter 4. This chapter also shows that the heat transfer rate density increases (i.e., the S curve becomes steeper) as the complexity and number of degrees of freedom of the structure are increased, in accord with the constructal law. The optimal geometric features of the tree structure are detailed in this chapter. Chapter 5 documents a numerical study of time-dependent melting where the heat transfer is convection dominated, unlike in chapter 3 and 4 where the melting is ruled by pure conduction. In accord with constructal design, the search is for effective heat-flow architectures. The volume-constrained improvement of the designs for heat flow begins with assuming the simplest structure, where a single line serves as heat source. Next, the heat source is endowed with freedom to change its shape as it grows. The objective of the numerical simulations is to discover the geometric features that lead to the fastest melting process. The results show that the heat transfer rate density increases as the complexity and number of degrees of freedom of the structure are increased. Furthermore, the angles between heat invasion lines have a minor effect on the global performance compared to other degrees of freedom: number of branching levels, stem length, and branch lengths. The effect of natural convection in the melt zone is documented.
Resumo:
This paper describes a methodology of using individual engineering undergraduate student projects as a means of effectively and efficiently developing new Design-Build-Test (DBT) learning experiences and challenges.
A key aspect of the rationale for this approach is that it benefits all parties. The student undertaking the individual project gets an authentic experience of producing a functional artefact, which has been the result of a design process that addresses conception, design, implementation and operation. The supervising faculty member benefits from live prototyping of new curriculum content and resources with a student who is at a similar level of knowledge and experience as the intended end users of the DBT outputs. The multiple students who ultimately undertake the DBT experiences / challenges benefit from the enhanced nature of a learning experience which has been “road tested” and optimised.
To demonstrate the methodology the paper will describe a case study example of an individual project completed in 2015. This resulted in a DBT design challenge with a theme of designing a catapult for throwing table tennis balls, the device being made from components laser cut from medium density fibreboard (MDF). Further three different modes of operation will be described which use the same resource materials but operate over different timescales and with different learning outcomes, from an icebreaker exercise focused on developing team dynamics through to full DBT where students get an opportunity to experience the full impact of their design decisions by competing against other students with a catapult they have designed and built themselves.
Resumo:
Current research shows a relationship between healthcare architecture and patient-related Outcomes. The planning and designing of new healthcare environments is a complex process; the needs of the various end-users of the environment must be considered, including the patients, the patients’ significant others, and the staff. The aim of this study was to explore the experiences of healthcare professionals participating in group modelling utilizing system dynamics in the pre-design phase of new healthcare environments. We engaged healthcare professionals in a series of workshops using system dynamics to discuss the planning of healthcare environments in the beginning of a construction, and then interviewed them about their experience. An explorative and qualitative design was used to describe participants’ experiences of participating in the group modelling projects. Participants (n=20) were recruited from a larger intervention study using group modeling and system dynamics in planning and designing projects. The interviews were analysed by qualitative content analysis. Two themes were formed, representing the experiences in the group modeling process: ‘Partaking in the G-M created knowledge and empowerment’and ‘Partaking in the G-M was different from what was expected and required time and skills’. The method can support participants in design teams to focus more on their healthcare organization, their care activities and their aims rather than focusing on detailed layout solutions. This clarification is important when decisions about the design are discussed and prepared and will most likely lead to greater readiness for future building process.
Resumo:
Using product and system design to influence user behaviour offers potential for improving performance and reducing user error, yet little guidance is available at the concept generation stage for design teams briefed with influencing user behaviour. This article presents the Design with Intent Method, an innovation tool for designers working in this area, illustrated via application to an everyday human–technology interaction problem: reducing the likelihood of a customer leaving his or her card in an automatic teller machine. The example application results in a range of feasible design concepts which are comparable to existing developments in ATM design, demonstrating that the method has potential for development and application as part of a user-centred design process.
Resumo:
Software engineering best practices allow significantly improving the software development. However, the implementation of best practices requires skilled professionals, financial investment and technical support to facilitate implementation and achieve the respective improvement. In this paper we proposes a protocol to design techniques to implement best practices of software engineering. The protocol includes the identification and selection of process to improve, the study of standards and models, identification of best practices associated with the process and the possible implementation techniques. In addition, technical design activities are defined in order to create or adapt the techniques of implementing best practices for software development.
Resumo:
Coefficient diagram method is a controller design technique for linear time-invariant systems. This design procedure occurs into two different domains: an algebraic and a graphical. The former is closely paired to a conventional pole placement method and the latter consists on a diagram whose reading from the plotted curves leads to insights regarding closed-loop control system time response, stability and robustness. The controller structure has two degrees of freedom and the design process leads to both low overshoot closed-loop time response and good robustness performance regarding mismatches between the real system and the design model. This article presents an overview on this design method. In order to make more transparent the presented theoretical concepts, examples in Matlab®code are provided. The included code illustrates both the algebraic and the graphical nature of the coefficient diagram design method. © 2016, King Fahd University of Petroleum & Minerals.
Resumo:
The following thesis navigates the primary artistic concept, design process and execution of Marchlena Rodgers’ costume design for the University of Maryland’s production of Intimate Apparel. Intimate Apparel opened October 9, 2015 in the University of Maryland’s Kay Theatre. The piece was written by Lynn Nottage directed by Jennifer Nelson. The set was designed by Lydia Francis, Lighting was designed by Max Doolittle.