967 resultados para endoplasmic reticulum aminopeptidase 1
Resumo:
We investigated the effects of gamma-radiation on cells isolated from the longitudinal smooth muscle layer of the guinea pig ileum, a relatively radioresistant tissue. Single doses (up to 50 Gy) reduced the amount of sarcoplasmatic reticulum and condensed the myofibrils, as shown by electron microscopy 3 days post-irradiation. After that, contractility of smooth muscle strips was reduced. Ca(2+) handling was altered after irradiation, as shown in fura-2 loaded cells, with elevated basal intracellular Ca(2+), reduced amount of intrareticular Ca(2+), and reduced capacitive Ca(2+) entry. Radiation also induced apoptosis, judged from flow cytometry of cells loaded with proprium iodide. Electron microscopy showed that radiation caused condensation of chromatin in dense masses around the nuclear envelope, the presence of apoptotic bodies, fragmentation of the nucleus, detachment of cells from their neighbors, and reductions in cell volume. Radiation also caused activation of caspase 12. Apoptosis was reduced by the administration of the caspase inhibitor Z-Val-Ala-Asp-fluoromethyl-ketone methyl ester (Z-VAD-FIVIK) during the 3 day period after irradiation, and by the chelator of intracellular Ca(2+), 1,2-bis(o-aminophenoxy)ethane-N,N,N`,N`-tetraacetic acid (BAPTA), from 1 h before until 2 h after irradiation. BAPTA also reduced the effects of radiation on contractility, basal intracellular Ca(2+), amount of intrareticular Ca(2+), capacitative Ca(2+) entry, and apoptosis. In conclusion, the effects of gamma radiation on contractility, Ca(2+) handling, and apoptosis appear due to a toxic action of intracellular Ca(2+). Ca(2+)-induced damage to the sarcoplasmatic reticulum seems a key event in impaired Ca(2+) handling and apoptosis induced by gamma-radiation. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The development of dengue viruses type 1 obtained from accute human sera and inoculated into mosquito cell cultures, was observed by standard transmission electron microscopy and cytochemical staining. It follows the trans-type mechanism already estabilished of other dengue types. Directed passage of single virus particles across the cell membrane seems to be a pathway of entry and exit in dengue-1 infected cells. The nature of numerous electron translucent vesicles and tubules, produced simmultaneously during virus replication inside the rough endoplasmic reticulum, was analyzed by cytochemical tests. The largest amount of virus particles was produced inside cell syncytia.
Resumo:
Protein glycosylation pathways, commonly found in fungal pathogens, offer an attractive new area of study for the discovery of antifungal targets. In particular, these post-translational modifications are required for virulence and proper cell wall assembly in Candida albicans, an opportunistic human pathogen. The C. albicans MNS1 gene is predicted to encode a member of the glycosyl hydrolase family 47, with 1,2-mannosidase activity. In order to characterise its activity, we first cloned the C. albicans MNS1 gene into Escherichia coli, then expressed and purified the enzyme. The recombinant Mns1 was capable of converting a Man9GlcNAc2 N-glycan core into Man8GlcNAc2 isomer B, but failed to process a Man5GlcNAc2-Asn N-oligosaccharide. These properties are similar to those displayed by Mns1 purified from C. albicansmembranes and strongly suggest that the enzyme is an ±1,2-mannosidase that is localised to the endoplasmic reticulum and involved in the processing of N-linked mannans. Polyclonal antibodies specifically raised against recombinant Mns1 also immunoreacted with the soluble ±1,2-mannosidases E-I and E-II, indicating that Mns1 could share structural similarities with both soluble enzymes. Due to the high degree of similarity between the members of family 47, it is conceivable that these antibodies may recognise ±1,2-mannosidases in other biological systems as well.
Resumo:
Glycosyl-inositolphospholipid (GPL) anchoring structures are incorporated into GPL-anchored proteins immediately posttranslationally in the rough endoplasmic reticulum, but the biochemical and cellular constituents involved in this "glypiation" process are unknown. To establish whether glypiation could be achieved in vitro, mRNAs generated by transcription of cDNAs encoding two GPL-anchored proteins, murine Thy-1 antigen and human decay-accelerating factor (DAF), and a conventionally anchored control protein, polymeric-immunoglobulin receptor (IgR), were translated in a rabbit reticulocyte lysate. Upon addition of dog pancreatic rough microsomes, nascent polypeptides generated from the three mRNAs translocated into vesicles. Dispersal of the vesicles with Triton X-114 detergent and incubation of the hydrophobic phase with phosphatidylinositol-specific phospholipases C and D, enzymes specific for GPL-anchor structures, released Thy-1 and DAF but not IgR protein into the aqueous phase. The selective incorporation of phospholipase-sensitive anchoring moieties into Thy-1 and DAF but not IgR translation products during in vitro translocation indicates that rough microsomes are able to support and regulate glypiation.
Resumo:
Summary The CD4 molecule plays a key role in AIDS pathogenesis, it is required for entry of the virus into permissive cells and its subsequent down-modulation of the cell surface is a hallmark of HN-1 infected cells. The virus encodes no less than three proteins that participate in this process: Nef, Vpu and Env. Vpu protein interacts with CD4 within the endoplasmic reticulum of infected cells, where it targets CD4 for degradation through the interaction with a cellular protein named ß-TrCP1. This F-box protein functions as the substrate recognition subunit of the SCF ß-Trcr E3 ubiquitin ligase, which normally induce the ubiquitination and subsequent degradation of various proteins such as ß-catenin and IxBa. Mammals possess a homologue of ß-TrCP1, HOS, also named ß-TrCP2 which has a cytoplasmic subcellular distribution. Structural analysis of the ligand-binding domain of both homologues shows striking surface similarities. Both F-box proteins have a redundant role in a number of cellular processes; however the potential role of ß-TrCP2 in HIV-1 infected cells has not been evaluated. In the present study, we assessed the existence of génetic variants of BRTC, encoding ß-TrCP1, and evaluated whether these variants would affect CD4 down-modulation. Additionally, we determined whether ß-TrCP2 shares with its homologue structural and functional properties that would allow it to bind Vpu, modulate CD4 expression, and thus participate in HN-1 pathogenesis. We identified a single nucleotide polymorphism present in the human population with an allelic frequency of 0.03 that leads to the substitution of alanine 507 by a serine. However, we showed by transient transfection in HeLa CD4+ cells that this variant behaves as ß-TrCP1 with respect to CD4 down-modulation. We established transient expression systems in HeLa CD4+ cells to test whether ß-TrCP2 is implicated in Vpu-mediated CD4 down-modulation. We show by coimmunoprecipitation experiments that ß-TrCP2 binds Vpu and is able to induce CD4 down-modulation as efficiently as ß-TrCP1. In two different cell lines, HeLa CD4+ and Jurkat, Vpu-mediated CD4 down-modulation could not be completely reversed through the silencing of endogenous ß-TrCP 1 or ß-TrCP2 individually, but required both genes to be silenced simultaneously. We evaluated the role of ß-TrCP1 and ß-TrCP2 in HIV-1 life cycle using silencing prior to actual viral infection. Both ß-TrCP1 and ß-TrCP2 contributed to CD4 down-modulation during aone-cycle viral infection iri Ghost cells. In addition, the combined silencing of both homologues in the absence of env and nef reversed CD4 down-modulation, showing that ß-TrCP 1 and ß-TrCP2 represent the main and additive effectors of HIV-1 encoded Vpu. In addition, we showed that silencing of ß-TrCPI but not ß-TrCP2 induced a decrease of HIV-1 LTR-driven expression. In a transient transfection system with Tat and a LTR luciferase reporter, both homologues modulated LTR-driven expression. The present study revealed that ß-TrCP2 represents a novel protein participating in HIV-1 cycle and complete comprehension of the complex interplay occurring between the two F-Box will improve our understanding of HIV-1 infection. Résumé La molécule CD4 joue un rôle clef dans la pathogenèse du SIDA ; elle est requise pour l'entrée du virus dans les cellules permissives et la diminution de sa concentration au niveau de la surface cellulaire est une importante caractéristique des cellules infectées par le VIH-1. Le virus encode pas moins de trois protéines qui participent à ce processus Nef, Vpu et Env. La protéine Vpu lie CD4 au niveau du réticulum endoplasmique et induit sa dégradation en interagissant avec une protéine cellulaire nommée ß-TrCP 1. Cette protéine de type F-Box est une sous unité du complexe ubiquitine-ligase E3 SCFß-TrCP. Elle permet la reconnaissance du substrat par le complexe qui induit l'ubiquitination et la subséquente dégradation de diverses protéines cellulaires comme la ß-catenin ou IκBα. Les mammifères possèdent un homologue à ß-TrCP1appelé ß-TrCP2 (ou HOS). L'analyse comparative du domaine permettant la reconnaissance des substrats des deux homologues montre de frappantes similarités. Le rôle de ß-TrCP2 dans le cycle viral du VIH-1 n'a pas encore été évalué. Lors de cette étude, nous avons recherché l'existence de variants génétique de BTRC (codant pour ß-TrCP1) et nous avons évalué si ces variants pourraient affecter la dégradation des molécules CD4 induite par le virus. Nous avons ainsi identifié un polymorphisme présent dans la population humaine avec une fréquence allélique de 0.03 qui consiste en une substitution de l'alanine 507 par une sérine. Nous avons cependant montré par transfection dans des cellules HeLa CD4+ que ce variant se comporte comme ß-TrCP 1 en ce qui concerne la modulation de CD4. De plus, nous avons déterminé si ß-TrCP2 partageait avec son homologue des propriétés structurelles et fonctionnelles qui lui permettraient de lier Vpu, moduler la concentration de CD4 et ainsi prendre part à la pathogenèse du SIDA. Pour ce faire, nous avons établi un système d'expression temporaire dans des cellules HeLa CD4+. Par co-immunoprécipitation, nous avons montré que ß-TrCP2 lie Vpu et est capable d'induire la dégradation de CD4 aussi efficacement que ß-TrCP1. Dans deux différentes lignées cellulaires, HeLa CD4+ et Jurkat, la dégradation de CD4 n'a pu être complètement inhibée par le silencing individuel de ß-TrCP 1 ou ß-TrCP2, mais nécessitait le silencing simultané des 2 gènes. Nous avons évalué le rôle des deux homologues dans le cycle viral du VIH-1 en infectant des cellules Ghost avec le virus après avoir effectué un silencing des deux protéines. Nous avons ainsi montré que ß-TrCP 1 et ß-TrCP2 contribuent de manière additive à la dégradation de CD4 induite par une infection du VIH-1. Le silencing combiné des deux homologues inhiba complètement cette dégradation en l'absence de env et nef, prouvant qu'aucune autre voie ne participe à ce processus: En outre, nous avons montré que le silencing de ß-TrCP 1 mais pas celui de ß-TrCP2 induisait une diminution de l'expression virale sous contrôle du LTR. Nous n'avons cependant pas été en mesure de reconstituer cet effet en exprimant Tat et un gène reporteur sous contrôle du LTR dans des cellules HeLa CD4+. Le présent travail révèle que ß-TrCP2 représente une nouvelle protéine participant dans le cycle viral du VIH-1. Une complète compréhension de l'effet de chacun des deux homologues sur le cycle viral permettra d'améliorer notre compréhension de l'infection par le VIH-1.
Resumo:
Endocannabinoids and cannabinoid 1 (CB(1)) receptors have been implicated in cardiac dysfunction, inflammation, and cell death associated with various forms of shock, heart failure, and atherosclerosis, in addition to their recognized role in the development of various cardiovascular risk factors in obesity/metabolic syndrome and diabetes. In this study, we explored the role of CB(1) receptors in myocardial dysfunction, inflammation, oxidative/nitrative stress, cell death, and interrelated signaling pathways, using a mouse model of type 1 diabetic cardiomyopathy. Diabetic cardiomyopathy was characterized by increased myocardial endocannabinoid anandamide levels, oxidative/nitrative stress, activation of p38/Jun NH(2)-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs), enhanced inflammation (tumor necrosis factor-α, interleukin-1β, cyclooxygenase 2, intracellular adhesion molecule 1, and vascular cell adhesion molecule 1), increased expression of CB(1), advanced glycation end product (AGE) and angiotensin II type 1 receptors (receptor for advanced glycation end product [RAGE], angiotensin II receptor type 1 [AT(1)R]), p47(phox) NADPH oxidase subunit, β-myosin heavy chain isozyme switch, accumulation of AGE, fibrosis, and decreased expression of sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA2a). Pharmacological inhibition or genetic deletion of CB(1) receptors attenuated the diabetes-induced cardiac dysfunction and the above-mentioned pathological alterations. Activation of CB(1) receptors by endocannabinoids may play an important role in the pathogenesis of diabetic cardiomyopathy by facilitating MAPK activation, AT(1)R expression/signaling, AGE accumulation, oxidative/nitrative stress, inflammation, and fibrosis. Conversely, CB(1) receptor inhibition may be beneficial in the treatment of diabetic cardiovascular complications.
Resumo:
A crucial step in the life cycle of arenaviruses is the biosynthesis of the mature fusion-active viral envelope glycoprotein (GP) that is essential for virus-host cell attachment and entry. The maturation of the arenavirus GP precursor (GPC) critically depends on proteolytic processing by the cellular proprotein convertase (PC) subtilisin kexin isozyme-1 (SKI-1)/site-1 protease (S1P). Here we undertook a molecular characterization of the SKI-1/S1P processing of the GPCs of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) and the pathogenic Lassa virus (LASV). Previous studies showed that the GPC of LASV undergoes processing in the endoplasmic reticulum (ER)/cis-Golgi compartment, whereas the LCMV GPC is cleaved in a late Golgi compartment. Herein we confirm these findings and provide evidence that the SKI-1/S1P recognition site RRLL, present in the SKI-1/S1P prodomain and LASV GPC, but not in the LCMV GPC, is crucial for the processing of the LASV GPC in the ER/cis-Golgi compartment. Our structure-function analysis revealed that the cleavage of arenavirus GPCs, but not cellular substrates, critically depends on the autoprocessing of SKI-1/S1P, suggesting differences in the processing of cellular and viral substrates. Deletion mutagenesis showed that the transmembrane and intracellular domains of SKI-1/S1P are dispensable for arenavirus GPC processing. The expression of a soluble form of the protease in SKI-I/S1P-deficient cells resulted in the efficient processing of arenavirus GPCs and rescued productive virus infection. However, exogenous soluble SKI-1/S1P was unable to process LCMV and LASV GPCs displayed at the surface of SKI-I/S1P-deficient cells, indicating that GPC processing occurs in an intracellular compartment. In sum, our study reveals important differences in the SKI-1/S1P processing of viral and cellular substrates.
Resumo:
Transforming growth factor beta (TGF-beta) is a pluripotent peptide hormone that regulates various cellular activities, including growth, differentiation, and extracellular matrix protein gene expression. We previously showed that TGF-beta induces the transcriptional activation domain (TAD) of CTF-1, the prototypic member of the CTF/NF-I family of transcription factors. This induction correlates with the proposed role of CTF/NF-I binding sites in collagen gene induction by TGF-beta. However, the mechanisms of TGF-beta signal transduction remain poorly understood. Here, we analyzed the role of free calcium signaling in the induction of CTF-1 transcriptional activity by TGF-beta. We found that TGF-beta stimulates calcium influx and mediates an increase of the cytoplasmic calcium concentration in NIH3T3 cells. TGF-beta induction of CTF-1 is inhibited in cells pretreated with thapsigargin, which depletes the endoplasmic reticulum calcium stores, thus further arguing for the potential relevance of calcium mobilization in TGF-beta action. Consistent with this possibility, expression of a constitutively active form of the calcium/calmodulin-dependent phosphatase calcineurin or of the calcium/calmodulin-dependent kinase IV (DeltaCaMKIV) specifically induces the CTF-1 TAD and the endogenous mouse CTF/NF-I proteins. Both calcineurin- and DeltaCaMKIV-mediated induction require the previously identified TGF-beta-responsive domain of CTF-1. The immunosuppressants cyclosporin A and FK506 abolish calcineurin-mediated induction of CTF-1 activity. However, TGF-beta still induces the CTF-1 TAD in cells treated with these compounds or in cells overexpressing both calcineurin and DeltaCaMKIV, suggesting that other calcium-sensitive enzymes might mediate TGF-beta action. These results identify CTF/NF-I as a novel calcium signaling pathway-responsive transcription factor and further suggest multiple molecular mechanisms for the induction of CTF/NF-I transcriptional activity by growth factors.
Resumo:
Frogs have been used as an alternative model to study pain mechanisms. Since we did not find any reports on the effects of sciatic nerve transection (SNT) on the ultrastructure and pattern of metabolic substances in frog dorsal root ganglion (DRG) cells, in the present study, 18 adult male frogs (Rana catesbeiana) were divided into three experimental groups: naive (frogs not subjected to surgical manipulation), sham (frogs in which all surgical procedures to expose the sciatic nerve were used except transection of the nerve), and SNT (frogs in which the sciatic nerve was exposed and transected). After 3 days, the bilateral DRG of the sciatic nerve was collected and used for transmission electron microscopy. Immunohistochemistry was used to detect reactivity for glucose transporter (Glut) types 1 and 3, tyrosine hydroxylase, serotonin and c-Fos, as well as nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-diaphorase). SNT induced more mitochondria with vacuolation in neurons, satellite glial cells (SGCs) with more cytoplasmic extensions emerging from cell bodies, as well as more ribosomes, rough endoplasmic reticulum, intermediate filaments and mitochondria. c-Fos immunoreactivity was found in neuronal nuclei. More neurons and SGCs surrounded by tyrosine hydroxylase-like immunoreactivity were found. No change occurred in serotonin- and Glut1- and Glut3-like immunoreactivity. NADPH-diaphorase occurred in more neurons and SGCs. No sign of SGC proliferation was observed. Since the changes of frog DRG in response to nerve injury are similar to those of mammals, frogs should be a valid experimental model for the study of the effects of SNT, a condition that still has many unanswered questions.
Resumo:
Le VIH-1 a développé plusieurs mécanismes menant à la dégradation de son récepteur cellulaire, la molécule CD4, dans le but d’augmenter la relâche de particules virales infectieuses et d’éviter que la cellule soit surinfectée. L’un de ces mécanismes est la dégradation, induite par la protéine virale Vpu, du CD4 nouvellement synthétisé au niveau du réticulum endoplasmique (RE). Vpu doit lier CD4 et recruter l’ubiquitine ligase cellulaire SCFβ-TrCP, via sa liaison à β-TrCP, afin de dégrader CD4. Puisque CD4 doit être retenu au RE pour permettre à Vpu d’induire sa dégradation via le système ubiquitine-protéasome, il a été suggéré que ce processus implique un mécanisme semblable à une voie cellulaire de dégradation des protéines mal-repliées appelée ERAD (« endoplasmic reticulum-associated degradation »). La dégradation par ERAD implique généralement la dislocation des protéines du RE vers le cytoplasme afin de permettre leur poly-ubiquitination et leur dégradation par le protéasome. Nous avons démontré que Vpu induit la poly-ubiquitination de CD4 dans des cellules humaines. Nos résultats suggèrent aussi que CD4 doit subir une dislocation afin d’être dégradé par le protéasome en présence de Vpu. De plus, un mutant transdominant négatif de l’ATPase p97, qui est impliquée dans la dislocation des substrats ERAD, inhibe complètement la dégradation de CD4 par Vpu. Enfin, nos résultats ont montré que l’ubiquitination sur des résidus accepteurs de l’ubiquitine (lysines) de la queue cytoplasmique de CD4 n’était pas essentielle, mais que la mutation des lysines ralentit le processus de dégradation de CD4. Ce résultat suggère que l’ubiquitination de la queue cytosolique de CD4 pourrait représenter un événement important dans le processus de dégradation induit par Vpu. L’attachement de l’ubiquitine a généralement lieu sur les lysines de la protéine ciblée. Toutefois, l’ubiquitination sur des résidus non-lysine (sérine, thréonine et cystéine) a aussi été démontrée. Nous avons démontré que la mutation de tous les sites potentiels d’ubiquitination cytoplasmiques de CD4 (K, C, S et T) inhibe la dégradation par Vpu. De plus, la présence de cystéines dans la queue cytoplasmique apparaît suffisante pour rendre CD4 sensible à Vpu en absence de lysine, sérine et thréonine. Afin d’expliquer ces résultats, nous proposons un modèle dans lequel l’ubiquitination de la queue cytosolique de CD4 serait nécessaire à sa dégradation et où les sites d’ubiquitination de CD4 seraient sélectionnés de façon non spécifique par l’ubiquitine ligase recrutée par Vpu. Enfin, nous avons observé que la co-expression d’une protéine Vpu incapable de recruter β-TrCP (Vpu S52,56/D) semble stabiliser le CD4 qui est retenu au RE. De plus, d’autres mutants de Vpu qui semblent capables de recruter β-TrCP et CD4 sont toutefois incapables d’induire sa dégradation. Ces résultats suggèrent que l’association de Vpu à CD4 et β-TrCP est essentielle mais pas suffisante pour induire la dégradation de CD4. Par conséquent, ces résultats soulèvent la possibilité que Vpu puisse recruter d’autres facteurs cellulaires pour induire la dégradation de CD4. Les résultats présentés ont permis de mieux définir le mécanisme de dégradation de CD4 par Vpu dans des cellules humaines. De plus, ces résultats nous ont permis d’élaborer un modèle dans lequel l’ubiquitine ligase cellulaire SCFβ-TrCP démontre de la flexibilité dans le choix des résidus à ubiquitiner afin d’induire la dégradation de CD4. Enfin, ces études jettent un oeil nouveau sur le rôle de Vpu dans ce processus puisque nos résultats suggèrent que Vpu doive recruter d’autres partenaires cellulaires, mis à part β-TrCP, pour induire la dégradation de CD4.
Resumo:
Le Virus Herpès Simplex de type 1 (HSV-1) est un agent infectieux qui cause l’herpès chez une grande proportion de la population mondiale. L’herpès est généralement considéré comme une maladie bénigne dont la forme la plus commune est l'herpès labial (communément appelé « bouton de fièvre »), mais elle peut se révéler très sérieuse et causer la cécité et l’encéphalite, voir létale dans certain cas. Le virus persiste toute la vie dans le corps de son hôte. Jusqu'à présent, aucun traitement ne peut éliminer le virus et aucun vaccin n’a été prouvé efficace pour contrôler l’infection herpétique. HSV-1 est un virus avec un génome d’ADN bicaténaire contenu dans une capside icosaèdrale entourée d’une enveloppe lipidique. Treize glycoprotéines virales se trouvent dans cette enveloppe et sont connues ou supposées jouer des rôles distincts dans différentes étapes du cycle de réplication viral, incluant l'attachement, l'entrée, l’assemblage, et la propagation des virus. La glycoprotéine M (gM) qui figure parmi ces glycoprotéines d’enveloppe, est la seule glycoprotéine non essentielle mais est conservée dans toute la famille herpesviridae. Récemment, l’homologue de gM dans le Pseudorabies virus (PRV), un autre herpesvirus, a été impliqué dans la phase finale de l’assemblage (i.e. l’enveloppement cytoplasmique) au niveau du réseau trans-Golgi (TGN) en reconnaissant spécifiquement des protéines tégumentaires et d’autres glycoprotéines d’enveloppe ([1]). Toutefois, il a été proposé que cette hypothèse ne s’applique pas pour le HSV-1 ([2]). De plus, contrairement à la localisation au TGN dans les cellules transfectées, HSV-1 gM se localise dans la membrane nucléaire et sur les virions périnucléaires durant une infection. L’objectif du projet présenté ici était d’éclaircir la relation de la localisation et la fonction de HSV-1 gM dans le contexte d’une infection. Dans les résultats rapportés ici, nous décrivons tout abord un mécanisme spécifique de ciblage nucléaire de HSV-1 gM. En phase précoce d’une infection, gM est ciblée à la membrane nucléaire d'une manière virus ii dépendante. Cela se produit avant la réorganisation du TGN normalement induite par l’infection et avant que gM n’entre dans la voie de sécrétion. Ce ciblage nucléaire actif et spécifique de gM ne semble pas dépendre des plusieurs des partenaires d’interaction proposés dans la littérature. Ces données suggèrent que la forme nucléaire de gM pourrait avoir un nouveau rôle indépendant de l’enveloppement final dans le cytoplasme. Dans la deuxième partie du travail présenté ici, nous avons concentré nos efforts sur le rôle de gM dans l’assemblage du virus en phase tardive de l’infection et en identifiant un domaine critique de gM. Nos résultats mettent en valeur l’importance du domaine carboxyl-terminal cytoplasmique de gM dans le transport de gM du réticulum endoplasmique (RE) à l’appareil de Golgi, dans l’enveloppement cytoplasmique et la propagation intercellulaire du virus. Ainsi, l’export du RE de gM a été complètement compromis dans les cellules transfectées exprimant un mutant de gM dépourvu de sa région C-terminale. La délétion la queue cytoplasmique de gM cause une réduction légère du titre viral et de la taille des plaques. L'analyse de ces mutants par microscopie électronique a démontré une accumulation des nucléocapsides sans enveloppe dans le cytoplasme par rapport aux virus de type sauvage. Étrangement, ce phénotype était apparent dans les cellules BHK mais absent dans les cellules 143B, suggérant que la fonction de gM dépende du type cellulaire. Finalement, le criblage de partenaires d’interaction du domaine C-terminal de gM identifiés par le système de double-hybride nous a permis de proposer plusieurs candidats susceptibles de réguler la fonction de gM dans la morphogénèse et la propagation de virus.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We investigated the effects of γ-radiation on cells isolated from the longitudinal smooth muscle layer of the guinea pig ileum, a relatively radioresistant tissue. Single doses (up to 50 Gy) reduced the amount of sarcoplasmatic reticulum and condensed the myofibrils, as shown by electron microscopy 3 days post-irradiation. After that, contractility of smooth muscle strips was reduced. Ca2+ handling was altered after irradiation, as shown in fura-2 loaded cells, with elevated basal intracellular Ca2+, reduced amount of intrareticular Ca2+, and reduced capacitive Ca2+ entry. Radiation also induced apoptosis, judged from flow cytometry of cells loaded with proprium iodide. Electron microscopy showed that radiation caused condensation of chromatin in dense masses around the nuclear envelope, the presence of apoptotic bodies, fragmentation of the nucleus, detachment of cells from their neighbors, and reductions in cell volume. Radiation also caused activation of caspase 12. Apoptosis was reduced by the administration of the caspase inhibitor Z-Val-Ala-Asp-fluoromethyl-ketone methyl ester (Z-VAD-FMK) during the 3 day period after irradiation, and by the chelator of intracellular Ca2+, 1,2-bis(o-aminophenoxy)-ethane-N,N,N′,N′-tetraacetic acid (BAPTA), from 1 h before until 2 h after irradiation. BAPTA also reduced the effects of radiation on contractility, basal intracellular Ca2+, amount of intrareticular Ca2+, capacitative Ca2+ entry, and apoptosis. In conclusion, the effects of gamma radiation on contractility, Ca2+ handling, and apoptosis appear due to a toxic action of intracellular Ca2+. Ca2+-induced damage to the sarcoplasmatic reticulum seems a key event in impaired Ca2+ handling and apoptosis induced by γ-radiation. © 2008 Elsevier B.V. All rights reserved.
Resumo:
ATP-binding cassette transporter A1 mediates the export of excess cholesterol from macrophages, contributing to the prevention of atherosclerosis. Advanced glycated albumin (AGE-alb) is prevalent in diabetes mellitus and is associated with the development of atherosclerosis. Independently of changes in ABCA-1 mRNA levels, AGE-alb induces oxidative stress and reduces ABCA-1 protein levels, which leads to macrophage lipid accumulation. These metabolic conditions are known to elicit endoplasmic reticulum (ER) stress. We sought to determine if AGE-alb induces ER stress and unfolded protein response (UPR) in macrophages and how disturbances to the ER could affect ABCA-1 content and cholesterol efflux in macrophages. AGE-alb induced a time-dependent increase in ER stress and UPR markers. ABCA-1 content and cellular cholesterol efflux were reduced by 33% and 47%, respectively, in macrophages treated with AGE-alb, and both were restored by treatment with 4-phenyl butyric acid (a chemical chaperone that alleviates ER stress), but not MG132 (a proteasome inhibitor). Tunicamycin, a classical ER stress inductor, also impaired ABCA-1 expression and cholesterol efflux (showing a decrease of 61% and 82%, respectively), confirming the deleterious effect of ER stress in macrophage cholesterol accumulation. Glycoxidation induces macrophage ER stress, which relates to the reduction in ABCA-1 and in reverse cholesterol transport, endorsing the adverse effect of macrophage ER stress in atherosclerosis. Thus, chemical chaperones that alleviate ER stress may represent a useful tool for the prevention and treatment of atherosclerosis in diabetes. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The dengue virus (DENV) non-structural 1 (NS1) protein plays a critical role in viral RNA replication and has a central position in DENV pathogenesis. DENV NS1 is a glycoprotein expressed in infected mammalian cells as soluble monomers that dimerize in the lumen of the endoplasmic reticulum; NS1 is subsequently transported to the cell surface, where it remains membrane associated or is secreted into the extracellular milieu as a hexameric complex. During the last three decades, the DENV NS1 protein has also been intensively investigated as a potential target for vaccines and antiviral drugs. In addition, NS1 is the major diagnostic marker for dengue infection. This review highlights some important issues regarding the role of NS1 in DENV pathogenesis and its biotechnological applications, both as a target for the development of safe and effective vaccines and antiviral drugs and as a tool for the generation of accurate diagnostic methods