963 resultados para electron cyclotron resonance


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The proce-ss ofoxygenic photosynthesis is vital to life on Earth. the central event in photosynthesis is light induced electron transfer that converts light into energy for growth. Ofparticular significance is the membrane bound multisubunit protein known as Photosystem I (PSI). PSI is a reaction centre that is responsible for the transfer of electrons across the membrane to reduce NADP+ to NADPH. The recent publication ofa high resolution X-ray structure of PSI has shown new information about the structure, in particular the electron transfer cofactors, which allows us to study it in more detail. In PSI, the secondary acceptor is crucial for forward electron transfer. In this thesis, the effect of removing the native acceptor phylloquinone and replacing it with a series of structurally related quinones was investigated via transient electron paramagnetic resonance (EPR) experiments. The orientation of non native quinones in the binding site and their ability to function in the electron transfer process was determined. It was found that PSI will readily accept alkyl naphthoquinones and anthraquinone. Q band EPR experiments revealed that the non-native quinones are incorporated into the binding site with the same orientation of the headgroup as in the native system. X band EPR spectra and deuteration experiments indicate that monosubstituted naphthoquinones are bound to the Al site with their side group in the position occupied by the methyl group in native PSI (meta to the hydrogen bonded carbonyl oxygen). X band EPR experiments show that 2, 3- disubstituted methyl naphthoquinones are also incorporated into the Al site in the same orientation as phylloquinone, even with the presence of a halogen- or sulfur-containing side chain in the position normally occupied by the phytyl tail ofphylloquinone. The exception to this is 2-bromo-3-methyl --.- _. -. - -- - - 4 _._ _ _ - _ _ naphthoquinone which has a poorly resolved spectrum, making determination of the orientation difficuh. All of the non-native quinones studied act as efficient electron acceptors. However, forward electron transfer past the quinone could only be demonstrated for anthraquinone, which has a more negative midpoint potential than phylloquinone. In the case of anthraquinone, an increased rate of forward electron transfer compared to native PSI was found. From these results we can conclude that the rate ofelectron transfer from Al to Fx in native PSI lies in the normal region ofthe Marcus Curve.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two time-resolved EPR techniques, have been used to study the light induced electron transfer(ET) in Type I photosynthetic reaction centers(RCs). First, pulsed EPR was used to compare PsaA-M688H and PsaB-M668H mutants of Chlamydomonas reinhardtii and Synechosystis sp. PCC 6803.The out-of-phase echo modulation curves combined with other EPR and optical data show that the effect of the mutations is species dependent. Second, transient and pulsed EPR data are presented which show that PsaA-A660N and PsaB-A640N mutations in C. reinhardtii alter the relative quantum yield of ET in the A- and B-branches of PS I. Third, transient EPR studies on RCs from Heliobacillus mobilis that have been exposed to oxygen show partial inhibition of ET. In the RCs in which ET still occurs, the ET kinetics and EPR spectra show evidence of oxidation of some but not all of the, BChl g and BChl g' to Chl a.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dependence of the electron transfer (ET) rate on the Photosystem I (PSI) cofactor phylloquinone (A1) is studied by time-resolved absorbance and electron paramagnetic resonance (EPR) spectroscopy. Two active branches (A and B) of electron transfer converge to the FX cofactor from the A1A and A1B quinone. The work described in Chapter 5 investigates the single hydrogen bond from the amino acid residue PsaA-L722 backbone nitrogen to A1A for its effect on the electron transfer rate to FX. Room temperature transient EPR measurements show an increase in the rate for the A1A- to FX for the PsaA-L722T mutant and an increased hyperfine coupling to the 2-methyl group of A1A when compared to wild type. The Arrhenius plot of the A1A- to FX ET in the PsaA-L722T mutant suggests that the increased rate is probably the result of a slight change in the electronic coupling between A1A- and FX. The reasons for the non-Arrhenius behavior are discussed. The work discussed in Chapter 6 investigates the directionality of ET at low temperature by blocking ET to the iron-sulfur clusters FX, FA and FB in the menB deletion mutant strain of Synechocyctis sp. PCC 6803, which is unable to synthesize phylloquinone, by incorporating the high midpoint potential (49 mV vs SHE) 2,3-dichloro-1,4-naphthoquinone (Cl2NQ) into the A1A and A1B binding sites. Various EPR spectroscopic techniques were implemented to differentiate between the spectral features created from A and B- branch electron transfer. The implications of this result for the directionality of electron transfer in PS I are discussed. The work discussed in Chapter 7 was done to study the dependence of the heterogeneous ET at low temperature on A1 midpoint potential. The menB PSI mutant contains plastiquinone-9 in the A1 binding site. The solution midpoint potential of the quinone measures 100 mV more positive then wild-type phylloquinone. The irreversible ET to the terminal acceptors FA and FB at low temperature is not controlled by the forward step from A1 to FX as expected due to the thermodynamic differences of the A1 cofactor in the two active branches A and B. Alternatives for the ET heterogeneity are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using bis(3,5-dimethylpyrazol-1-yl) methane as the bidentate N donor ligand L, the yellow compound trans-[(RuL2)-L-III(OMe)(2)]ClO4 center dot CH2Cl2 is synthesized. It is a rare example of a mononuclear dialkoxo complex of Ru(III). It shows a quasireversible Ru(II/III) couple at -0.65 V versus NHE in acetonitrile at a Pt electrode. Its magnetic moment at room temperature corresponds to one unpaired electron. It displays a rhombic EPR spectrum in acetone at 77 K with g = 2.219, 2.062 and 1.855. (C) 2009 Elsevier B. V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurately measured peptide masses can be used for large-scale protein identification from bacterial whole-cell digests as an alternative to tandem mass spectrometry (MS/MS) provided mass measurement errors of a few parts-per-million (ppm) are obtained. Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS) routinely achieves such mass accuracy either with internal calibration or by regulating the charge in the analyzer cell. We have developed a novel and automated method for internal calibration of liquid chromatography (LC)/FTICR data from whole-cell digests using peptides in the sample identified by concurrent MS/MS together with ambient polydimethyl-cyclosiloxanes as internal calibrants in the mass spectra. The method reduced mass measurement error from 4.3 +/- 3.7 ppm to 0.3 +/- 2.3 ppm in an E. coli LC/FTICR dataset of 1000 MS and MS/MS spectra and is applicable to all analyses of complex protein digests by FTICRMS. Copyright (c) 2006 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Puff-by-puff resolved gas phase free radicals were measured in mainstream smoke from Kentucky 2R4F reference cigarettes using ESR spectroscopy. Three spin-trapping reagents were evaluated: PBN, DMPO and DEPMPO. Two procedures were used to collect gas phase smoke on a puff-resolved basis: i) the accumulative mode, in which all the gas phase smoke up to a particular puff was bubbled into the trap (i.e., the 5th puff corresponded to the total smoke from the 1st to 5th puffs). In this case, after a specified puff, an aliquot of the spin trap was taken and analysed; or, ii) the individual mode, in which the spin trap was analysed and then replaced after each puff. Spin concentrations were determined by double-integration of the first derivative of the ESR signal. This was compared with the integrals of known standards using the TEMPO free radical. The radicals trapped with PBN were mainly carbon-centred, whilst the oxygen-centred radicals were identified with DMPO and DEPMPO. With each spin trap, the puff-resolved radical concentrations showed a characteristic pattern as a function of the puff number. Based on the spin concentrations, the DMPO and DEPMPO spin traps showed better trapping efficiencies than PBN. The implication for gas phase free radical analysis is that a range of different spin traps should be used to probe complex free radical reactions in cigarette smoke.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Free radicals in cigarette smoke have been studied using spin trapping EPR techniques. 2R4F reference cigarettes were smoked using 35 ml puff volumes of 2 seconds duration, once every 60 seconds. The particulate phase of the smoke was separated from the gas phase by passing the smoke through a Cambridge filter pad. For both phases, free radicals were measured and identified. A range of spin-traps was employed: PBN, DMPO, DEPMPO, and DPPH-PBN. In the gas-phase, short-lived carbon- and oxygen- centered radicals were identified; the ratios between them changed during the smoking runs. For the first puffs, C-centered radicals predominated while for the later puffs, O-centered radicals were mainly observed. The particulate phase and the ‘tar’ were studied as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small-angle X-ray scattering (SAXS) and electron paramagnetic resonance (EPR) have been carried out to investigate the structure of the self-aggregates of two phenothiazine drugs, chlorpromazine (CPZ) and trifluoperazine (TFP), in aqueous solution. In the SAXS studies, drug solutions of 20 and 60 mM, at pH 4.0 and 7.0, were investigated and the best data fittings were achieved assuming several different particle form factors with a homogeneous electron density distribution in respect to the water environment. Because of the limitation of scattering intensity in the q range above 0.15 angstrom(-1), precise determination of the aggregate shape was not possible and all of the tested models for ellipsoids, cylinders, or parallelepipeds fitted the experimental data equally well. The SAXS data allows inferring, however, that CPZ molecules might self-assemble in a basis set of an orthorhombic cell, remaining as nanocrystallites in solution. Such nanocrystals are composed of a small number of unit cells (up to 10, in c-direction), with CPZ aggregation numbers of 60-80. EPR spectra of 5- and 16-doxyl stearic acids bound to the aggregates were analyzed through simulation, and the dynamic and magnetic parameters were obtained. The phenothiazine concentration in EPR experiments was in the range of 5-60 mM. Critical aggregation concentration of TFP is lower than that for CPZ, consistent with a higher hydrophobicity of TFP. At acidic pH 4.0 a significant residual motion of the nitroxide relative to the aggregate is observed, and the EPR spectra and corresponding parameters are similar to those reported for aqueous surfactant micelles. However, at pH 6.5 a significant motional restriction is observed, and the nitroxide rotational correlation times correlate very well with those estimated for the whole aggregated particle from SAXS data. This implies that the aggregate is densely packed at this pH and that the nitroxide is tightly bound to it producing a strongly immobilized EPR spectrum. Besides that, at pH 6.5 the differences in motional restriction observed between 5- and 16-DSA are small, which is different from that observed for aqueous surfactant micelles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Europium-doped lanthanum aluminate (LaAlO(3)) powder was prepared by using a combustion method. The crystallization, surface morphology, specific surface area and luminescence properties of the samples have been investigated. Photoluminescence studies of Eu doped LaAlO(3) showed orange-reddish emission due to Eu(3+) ions. LaAlO(3):Eu(3+) exhibits one thermally stimulated luminescence (TSL) peak around 400 degrees C. Room temperature electron spin resonance spectrum of irradiated phosphor appears to be a superposition of two centres. One of them (centre I) with principal g-value 2.017 is identified as an O(-) centre while centre II with an isotropic g-value 2.011 is assigned to an F(+) centre (singly ionized oxygen vacancy). An additional defect centre observed during thermal annealing around 300 degrees C grows with the annealing temperature. This centre (assigned to F(+) centre) originates from an F-centre (oxygen vacancy with two electrons) and the F-centre along with the associated F(+) centre appear to correlate with the observed TSL peak in LaAlO(3):Eu(3+) phosphor. The activation energy for this peak has been determined to be 1.54 eV from TSL data. (C) 2010 Elsevier Masson SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Samples of natural andalusite (Al(2)SiO(5)) crystal have been investigated in terms of thermoluminescence (TL) and electron paramagnetic resonance (EPR) measurements. The TL glow curves of samples previously annealed at 600 degrees C for 30 min and subsequently gamma-irradiated gave rise to four glow peaks at 150, 210, 280 and 350 degrees C. The EPR spectra of natural samples heat-treated at 600 degrees C for 30 min show signals at g = 5.94 and 2.014 that do not change after gamma irradiation and thermal treatments. However, it was observed that the appearance of a paramagnetic center at g=1.882 for the samples annealed at 600 degrees C for 30 min followed gamma irradiation. This line was attributed to Ti(3+) centers. The EPR signals observed at g=5.94 and 2.014 are due to Fe(3+). Correlations between EPR and TL results of these crystals show that the EPR line at g=1.882 and the TL peak at 280 degrees C can be attributed to the same defect center. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Samples of natural sodalite, Na(8)Al(6)Si(6)O(24)Cl(2), submitted to gamma irradiation and to thermal treatments, have been investigated using the thermoluminescence (TL) and electron paramagnetic resonance (EPR) techniques. Both, natural and heat-treated samples at 500A degrees C in air for 30 min, present an EPR signal around g = 2.01132 attributed to oxygen hole centers. The EPR spectra of irradiated samples show an intense line at g = 2.0008 superimposed by a hyperfine multiplet of 11 lines due to an O(-) ion in an intermediate position with respect to two adjacent Al nuclei. In the TL measurements, the samples were annealed at 500A degrees C for 30 min and then irradiated with gamma doses varying from 0.001 to 20 kGy. All the samples have shown TL peaks at 110, 230, 270, 365, and 445A degrees C. A correlation between the EPR g = 2.01132 line and the 365A degrees C TL peak was observed. A TL model is proposed in which a Na(+) ion acts as a charge compensator when an Al(3+) ion replaces a Si(4+) lattice ion. The gamma ray destruction of the Al-Na complex provides an electron trapped at the Na and a hole trapped at a non-bridging oxygen ion adjacent to the Al(3+) ion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silicate mineral hemimorphite has been investigated concerning its TL, IR and EPR properties. A broad TL peak around 180 degrees C and a weaker and narrower peak around 360 degrees C were found in a sample annealed at 600 degrees C for I h and then irradiated. The deconvolution using the CGCD method revealed peaks around 132, 169, 222 and 367 degrees C. The reflectivity measurements showed several bands in the NIR region due to H(2)O, OH and Al-OH complexes. No band was observed in the visible region. The thermal treatments were carried out from similar to 110 to 940 degrees C and dehydration was observed, first causing a diminishing optical absorption in general and the disappearance of water and hydroxyl absorption bands. The EPR spectrum of natural hemimorphite, presented Cu(2+) signals at g = 2.4 and g = 2.1 plus E(1)` signal superposed to Fe(3+) signal around g = 2.0. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermoluminescence, electron paramagnetic resonance and optical absorption properties of rhodonite, a natural silicate mineral, have been investigated and compared to those of synthetic crystal, pure and doped. The TL peaks grow linearly for radiation dose up to 4 kGy, and then saturate. In all the synthetic samples, 140 and 340 degrees C TL peaks are observed; the difference occurs in their relative intensities, but only 340 degrees C peak grows strongly for high doses. Al(2)O(3) and Al(2)O(3) + CaO-doped synthetic samples presented several decades intenser TL compared to that of synthetic samples doped with other impurities. A heating rate of 4 degrees C/s has been used in all the TL readings. The EPR spectrum of natural rhodonite mineral has only one huge signal around g = 2.0 with width extending from 1,000 to 6,000 G. This is due to Mn dipolar interaction, a fact proved by numerical calculation based on Van Vleck dipolar broadening expression. The optical absorption spectrum is rich in absorption bands in near-UV, visible and near-IR intervals. Several bands in the region from 540 to 340 nm are interpreted as being due to Mn(3+) in distorted octahedral environment. A broad and intense band around 1,040 nm is due to Fe(2+). It decays under heating up to 900 degrees C. At this temperature it is reduced by 80% of its original intensity. The pink, natural rhodonite, heated in air starts becoming black at approximately 600 degrees C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interaction between angiotensin II (AII, DRVYIHPF) and its analogs carrying 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC) and detergents-negatively charged sodium dodecyl sulfate (SDS) and zwitterionic N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS)-was examined by means of EPR, CD, and fluorescence. EPR spectra of partially active TOAC(1)-AII and inactive TOAC(3)-AII in aqueous solution indicated fast tumbling, the freedom of motion being greater at the N-terminus. Line broadening occurred upon interaction with micelles. Below SDS critical micelle concentration, broader lines indicated complex formation with tighter molecular packing than in micelles. Small changes in hyperfine splittings evinced TOAC location at the micelle-water interface. The interaction with anionic micelles was more effective than with zwitterionic micelles. Peptide-micelle interaction caused fluorescence increase. The TOAC-promoted intramolecular fluorescence quenching was more, pronounced for TOAC(3)-AII because of the proximity between the nitroxide and Tyr(4). CD spectra showed that although both AII and TOAC(1)-AII presented flexible conformations in water, TOAC(3)-AII displayed conformational restriction because of the TOAC-imposed bend (Schreier et al., Biopolymers 2004, 74, 389). In HPS, conformational changes were observed for the labeled peptides at neutral and basic pH. In SDS, all peptides underwent pH-dependent conformational changes. Although the spectra suggested similar folds for All and TOAC(1)-AII, different conformations were acquired by TOAC(3)-AII. The membrane environment has been hypothesized to shift conformational equilibria so as to stabilize the receptor-bound conformation of ligands. The fact that TOAC(3)-AII is unable to acquire conformations similar to those of native AII and partially active TOAC(1)-AII is probably the explanation for its lack of biological activity. (C) 2009 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 92: 525-537, 2009.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The iso-alpha-acids or isohumulones are the major contributors to the bitter taste of beer, and it is well-recognized that they are degraded during beer aging. In particular, the trans-isohumulones seem to be less stable than the cis-isohumulones. The major radical identified in beer is the 1-hydroxyethyl radical; however, the reactivity between this radical and the isohumulones has not been reported until now. Therefore, we studied the reactivity of isohumulones toward the 1-hydroxyethyl radical through a competitive kinetic approach. It was observed that both cis- and trans-isohumulones and dihydroisohumulones are decomposed in the presence of 1-hydroxyethyl radicals, while the reactivities are comparable. On the other hand, the tetrahydroisohumulones did not react with 1-hydroxyethyl radicals. The apparent second-order rate constants for the reactions between the 1-hydroxyethyl radical and these compounds were determined by electron paramagnetic resonance (EPR) spectroscopy and electrospray ionization-tandem mass spectrometry [ESI(+)-MS/MS]. It follows that degradation of beer bitter acids is highly influenced by the presence of 1-hydroxyethyl radicals. The reaction products were detected by liquid chromatography electrospray ionization-ion trap-tandem mass spectrometry (LC-ESI-IT-MS/MS), and the formation of oxidized derivatives of the isohumulones was confirmed. These data help to understand the mechanism of beer degradation upon aging.