231 resultados para electrocatalysis


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper the preparation of isopoly- and heteropolyoxometallates (IPA and HPA) thin film modified carbon fiber (CF) microelectrodes and the factor that influences the modification of IPA and HPA films are described. IPA and HPA film modified CF microelectrodes can all be prepared by cyclic potential scan and simple dip coating. The modified electrodes prepared are very stable and reversible in acidic solution with monolayer characteristics. The electrochemical pretreatment of CF microelectrodes plays an important role in the modification of IPA and HPA film. The absorption of IPA and HPA film on electrode surfaces has been discussed on the basis of surface conditions of the CF microelectrode and the structure of IPA and HPA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel Eastman-AQ/Ni(II) chemically modified electrode (CME) produced by "double coating step" deposition of a poly(ester sulphonic acid) polymer film and Ni2+-containing crystalline species onto glassy carbon instead of a metallic nickel electrode exhibited stable electrocatalytic oxidation of numerous alpha-hydrogen compounds including carbohydrates, amines and amino acids. In cyclic voltammetry, the electrocatalysis appeared with an irreversible anodic wave at +0.55 V (vs. Ag/AgCl). The CME was adapted for constant-potential amperometric detection of these compounds in flow injection analysis. Using the CME, the linear response concentration range was between 1.0 x 10(-5) and 5.0 x 10(-2) mol/l and the detection limit was 5.0 x 10(-6) mol/l for glucose. The stability of the CME was adequate for routine quantitative application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The preparation and the behaviour of a Prussian Blue (PB) film on a platinum microdisk electrode has been described. Electrocatalytic oxidation of ascorbic acid has occurred at the PB film modified microelectrode. This shows a typical example of a modified microelectrode in electrocatalysis following our previous theoretical studies (J. Electroanal. Chem., 309 (1991) 103) and the related catalytic reaction rate constant was determined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A microcarbon array electrode was modified by the placement of a Nafion film containing cobalt tetramethylpyridyl phorphyrin on its surface. This electrode was applied to the analysis of solution glucose when it was further modified by the immobilization of glucose oxidase on the outermost surface of the Nafion by the cross-linking of serum albumin with glutaraldehyde. The concomitant decrease in the concentration of oxygen, as it was consumed in the enzymatic reaction of glucose with glucose oxidase, was determined by either cyclic voltammetry or a double potential step method at the porphyrin-Nafion catalytic electrode. Glucose could be determined in the range of 0.01-4 mM rapidly, without interference from substances such as ascorbate or other saccharides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of chemically modified electrodes (CMEs) for liquid chromatography and flow-injection analysis is reviewed. Electrochemical detection with CMEs based on electrocatalysis, permselectivity, ion flow in redox films, and ion transfer across the water-solidified nitrobenzene interface is discussed in terms of improving the stability, selectivity, and scope of electrochemical detectors, and the detection of electroinactive substances. More than 90 references are included.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The work presented in this article shows the power of the variable temperature, in-situ FT-IR spectroscopy system developed in Newcastle with respect to the investigation of fuel cell electro-catalysis. On the Ru(0001) electrode surface, CO co-adsorbs with the oxygen-containing adlayers to form mixed [CO+(2x2)-O(H)] domains. The electro-oxidation of the Ru(0001) surface leads to the formation of active (1x1)-O(H) domains, and the oxidation of adsorbed CO then takes place at the perimeter of these domains. At 20 degrees C, the adsorbed CO is present as rather compact islands. In contrast, at 60 degrees C, the COads is present as a relatively looser and weaker adlayer. Higher temperature was also found to facilitate the surface diffusion and oxidation of COads. No dissociation or electro-oxidation of methanol was observed at potentials below approximately 950mV; however, the Ru(0001) surface at high anodic potentials was observed to be very active. On both Pt and PtRu nanoparticle surfaces, only one linear bond CO adsorbate was formed from methanol adsorption, and the PtRu surface significantly promoted both methanol dissociative adsorption to CO and its further oxidation to CO2. Increasing temperature from 20 to 60 degrees C significantly facilitates the methanol turnover to CO2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamics of adsorption and oxidation of CO on Ru(0001) electrode in sulfuric acid solution have been studied using in situ FTIR spectroscopy under potential control and at open circuit, the latter at 20 and 55 degrees C. The in situ IR data show clearly that the bisulfate anion adsorbs on the Ru(0001) surface over the potential range from -200 mV to 350 mV (vs. Ag/AgCl) at 20 degrees C in the absence and presence of adsorbed CO; however, increasing the temperature to 55 degrees C and/ or increasing the concentration of dissolved O-2 reduces the bisulfate adsorption. The formation of surface (hydro-) oxide at higher potentials replaces the bisulfate adsorbates. Both linear (COL) and three-fold hollow bonded CO (COH) adsorbates were produced following CO adsorption at Ru(0001) in H2SO4, as was observed in our previous studies in HClO4. However, the amount of adsorbed CO observed in H2SO4 was ca. 10% less than that in HClO4; in addition, the COL and COH frequencies were higher in H2SO4, and the onset potential for COads oxidation 25 mV lower. These new results are interpreted in terms of a model in which the adsorbed bisulfate weakens the CO adlayer, allowing the active Ru oxide layer to form at lower potentials. Significantly different results were observed at open circuit in H2SO4 compared both to the data under potential control and to our earlier data in HClO4, and these observations were rationalized in terms of the adsorbed HSO4- anions (pre-adsorbed at -200 mV) inhibiting the oxidation of the surface at open circuit (after stepping from the initial potential of -200 mV), as the latter was no longer driven by the imposed electrochemical potential but via chemical oxidation by trace dissolved O-2. Results from experiments at open circuit at 55 degrees C and using oxygen-saturated H2SO4 supported this model. The difference in Ru surface chemistry between imposed electrochemical control and chemical control has potential implications with respect to fuel cell electrocatalysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The presence of mobile ions complicates the implementation of voltage-modulated scanning probe microscopy techniques such as Kelvin probe force microscopy (KPFM). Overcoming this technical hurdle, however, provides a unique opportunity to probe ion dynamics and electrochemical processes in liquid environments and the possibility to unravel the underlying mechanisms behind important processes at the solid–liquid interface, including adsorption, electron transfer and electrocatalysis. Here we describe the development and implementation of electrochemical force microscopy (EcFM) to probe local bias- and time-resolved ion dynamics and electrochemical processes at the solid–liquid interface. Using EcFM, we demonstrate contact potential difference measurements, consistent with the principles of open-loop KPFM operation. We also demonstrate that EcFM can be used to investigate charge screening mechanisms and electrochemical reactions in the probe–sample junction. We further establish EcFM as a force-based imaging mode, allowing visualization of the spatial variability of sample-dependent local electrochemical properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

First principles calculations with molecular dynamics are
utilized to simulate a simplified electrical double layer formed in the
active electric potential region during the electrocatalytic oxidation of
ethanol on Pd electrodes running in an alkaline electrolyte. Our
simulations provide an atomic level insight into how ethanol oxidation
occurs in fuel cells: New mechanisms in the presence of the simplified
electrical double layer are found to be different from the traditional
ones; through concerted-like dehydrogenation paths, both acetaldehyde
and acetate are produced in such a way as to avoid a variety of
intermediates, which is consistent with the experimental data obtained
from in situ FTIR spectroscopy. Our work shows that adsorbed OH on
the Pd electrode rather than Pd atoms is the active center for the
reactions; the dissociation of the C−H bond is facilitated by the
adsorption of an OH− anion on the surface, resulting in the formation
of water. Our calculations demonstrate that water dissociation rather than H desorption is the main channel through which
electrical current is generated on the Pd electrode. The effects of the inner Helmholtz layer and the outer Helmholtz layer are
decoupled, with only the inner Helmholtz layer being found to have a significant impact on the mechanistics of the reaction. Our
results provide atomic level insight into the significance of the simplified electrical double layer in electrocatalysis, which may be
of general importance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The most active binary PtSn catalyst for direct ethanol fuel cell applications has been studied at 20 oC and 60 oC, using variable temperature electrochemical in-situ FTIR. In comparison with Pt, binary PtSn inhibits ethanol dissociation to CO(a), but promotes partial oxidation to acetaldehyde and acetic acid. Increasing the temperature from 20 oC to 60 oC facilitates both ethanol dissociation to CO(a) and their further oxidation to CO2, leading to an increased selectivity towards CO2; however, acetaldehyde and acetic acid are still the main products. Potential-dependent phase diagrams for surface oxidants of OH(a) formation on Pt(111), Pt(211) and Sn modified Pt(111) and Pt(211) surfaces have been determined using density functional theory (DFT) calculations. It is shown that Sn promotes the formation of OH(a) with a lower onset potential on the Pt(111) surface, whereas an increase in the onset potential is found on modification of the (211) surface. In addition, Sn inhibits the Pt(211) step edge with respect to ethanol C-C bond breaking compared with that found on the pure Pt, which reduces the formation of CO(a). Sn was also found to facilitate ethanol dehydrogenation and partial oxidation to acetaldehyde and acetic acid which, combined with the more facile OH(a) formation on the Pt(111) surface, gives us a clear understanding of the experimentally determined results. This combined electrochemical in-situ FTIR and DFT study, provides, for the first time, an insight into the long-term puzzling features of the high activity but low CO2 production found on binary PtSn ethanol fuel cell catalysts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dye-sensitized solar cells (DSCs) are promising alternatives to conventional silicon devices because of their simple fabrication procedure, low cost, and high efficiency. Platinum is generally used as a superior counter electrode (CE) material, but the disadvantages such as high cost and low abundance greatly restrict the large-scale application of DSCs. An efficient and sustainable way to overcome the limited supply of Pt is the development of high-efficiency Pt-free CE materials, which should possess both high electrical conductivity and superior electrocatalytic activity simultaneously. Herein, for the first time, a two-step strategy to synthesize ruthenium dioxide (RuO2) nanocrystals is reported, and it is shown that RuO2 catalysts exhibit promising electrocatalytic activity towards triiodide reduction, which results in comparable energy conversion efficiency to that of conventional Pt CEs. More importantly, by virtue of first-principles calculations, the catalytic mechanism of electrocatalysis for triiodide reduction on various CEs is investigated systematically and it is found that the electrochemical triiodide reduction reaction on RuO2 catalyst surfaces can be enhanced significantly, owing to the ideal combination of good electrocatalytic activity and high electrical conductivity.