395 resultados para eigenvalue


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The eigenvalue and eigenstructure assignment procedure has found application in a wide variety of control problems. In this paper a method for assigning eigenstructure to a Linear time invariant multi-input system is proposed. The algorithm determines a matrix that has eigenvalues and eigenvectors at the desired locations. It is obtained from the knowledge of the open-loop system and the desired eigenstructure. solution of the matrix equation, involving unknown controller gains, open-loop system matrices, and desired eigenvalues and eigenvectors, results in the state feedback controller. The proposed algorithm requires the closed-loop eigenvalues to be different from those of the open-loop case. This apparent constraint can easily be overcome by a negligible shift in the values. Application of the procedure is illustrated through the offset control of a satellite supported, from an orbiting platform, by a flexible tether,

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We introduce the inverse annihilation and creation operators a-1 and a(dagger-1) by their actions on the number states. We show that the squeezed vacuum exp(1/2xia(dagger2)]\0] and squeezed first number state exp[1.2xia(dagger2)]\n = 1] are respectively the eigenstates of the operators (a(dagger-1)a) and (aa(dagger-1)) with the eigenvalue xi.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A practical method is proposed to identify the mode associated with the frequency part of the eigenvalue of the Floquet transition matrix (FTM). From the FTM eigenvector, which contains the states and their derivatives, the ratio of the derivative and the state corresponding to the largest component is computed. The method exploits the fact that the imaginary part of this (complex) ratio closely approximates the frequency of the mode. It also lends itself well to automation and has been tested over a large number of FTMs of order as high as 250.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a complete solution to the problem of coherent-mode decomposition of the most general anisotropic Gaussian Schell-model (AGSM) beams, which constitute a ten-parameter family. Our approach is based on symmetry considerations. Concepts and techniques familiar from the context of quantum mechanics in the two-dimensional plane are used to exploit the Sp(4, R) dynamical symmetry underlying the AGSM problem. We take advantage of the fact that the symplectic group of first-order optical system acts unitarily through the metaplectic operators on the Hilbert space of wave amplitudes over the transverse plane, and, using the Iwasawa decomposition for the metaplectic operator and the classic theorem of Williamson on the normal forms of positive definite symmetric matrices under linear canonical transformations, we demonstrate the unitary equivalence of the AGSM problem to a separable problem earlier studied by Li and Wolf [Opt. Lett. 7, 256 (1982)] and Gori and Guattari [Opt. Commun. 48, 7 (1983)]. This conn ction enables one to write down, almost by inspection, the coherent-mode decomposition of the general AGSM beam. A universal feature of the eigenvalue spectrum of the AGSM family is noted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nonconservatively loaded columns. which have stochastically distributed material property values and stochastic loadings in space are considered. Young's modulus and mass density are treated to constitute random fields. The support stiffness coefficient and tip follower load are considered to be random variables. The fluctuations of external and distributed loadings are considered to constitute a random field. The variational formulation is adopted to get the differential equation and boundary conditions. The non self-adjoint operators are used at the boundary of the regularity domain. The statistics of vibration frequencies and modes are obtained using the standard perturbation method, by treating the fluctuations to be stochastic perturbations. Linear dependence of vibration and stability parameters over property value fluctuations and loading fluctuations are assumed. Bounds for the statistics of vibration frequencies are obtained. The critical load is first evaluated for the averaged problem and the corresponding eigenvalue statistics are sought. Then, the frequency equation is employed to transform the eigenvalue statistics to critical load statistics. Specialization of the general procedure to Beck, Leipholz and Pfluger columns is carried out. For Pfluger column, nonlinear transformations are avoided by directly expressing the critical load statistics in terms of input variable statistics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Leipholz column which is having the Young modulus and mass per unit length as stochastic processes and also the distributed tangential follower load behaving stochastically is considered. The non self-adjoint differential equation and boundary conditions are considered to have random field coefficients. The standard perturbation method is employed. The non self-adjoint operators are used within the regularity domain. Full covariance structure of the free vibration eigenvalues and critical loads is derived in terms of second order properties of input random fields characterizing the system parameter fluctuations. The mean value of critical load is calculated using the averaged problem and the corresponding eigenvalue statistics are sought. Through the frequency equation a transformation is done to yield load parameter statistics. A numerical study incorporating commonly observed correlation models is reported which illustrates the full potentials of the derived expressions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An important tool in signal processing is the use of eigenvalue and singular value decompositions for extracting information from time-series/sensor array data. These tools are used in the so-called subspace methods that underlie solutions to the harmonic retrieval problem in time series and the directions-of-arrival (DOA) estimation problem in array processing. The subspace methods require the knowledge of eigenvectors of the underlying covariance matrix to estimate the parameters of interest. Eigenstructure estimation in signal processing has two important classes: (i) estimating the eigenstructure of the given covariance matrix and (ii) updating the eigenstructure estimates given the current estimate and new data. In this paper, we survey some algorithms for both these classes useful for harmonic retrieval and DOA estimation problems. We begin by surveying key results in the literature and then describe, in some detail, energy function minimization approaches that underlie a class of feedback neural networks. Our approaches estimate some or all of the eigenvectors corresponding to the repeated minimum eigenvalue and also multiple orthogonal eigenvectors corresponding to the ordered eigenvalues of the covariance matrix. Our presentation includes some supporting analysis and simulation results. We may point out here that eigensubspace estimation is a vast area and all aspects of this cannot be fully covered in a single paper. (C) 1995 Academic Press, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A symmetrizer of a nonsymmetric matrix A is the symmetric matrix X that satisfies the equation XA = A(t)X, where t indicates the transpose. A symmetrizer is useful in converting a nonsymmetric eigenvalue problem into a symmetric one which is relatively easy to solve and finds applications in stability problems in control theory and in the study of general matrices. Three designs based on VLSI parallel processor arrays are presented to compute a symmetrizer of a lower Hessenberg matrix. Their scope is discussed. The first one is the Leiserson systolic design while the remaining two, viz., the double pipe design and the fitted diagonal design are the derived versions of the first design with improved performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flexible cantilever pipes conveying fluids with high velocity are analysed for their dynamic response and stability behaviour. The Young's modulus and mass per unit length of the pipe material have a stochastic distribution. The stochastic fields, that model the fluctuations of Young's modulus and mass density are characterized through their respective means, variances and autocorrelation functions or their equivalent power spectral density functions. The stochastic non self-adjoint partial differential equation is solved for the moments of characteristic values, by treating the point fluctuations to be stochastic perturbations. The second-order statistics of vibration frequencies and mode shapes are obtained. The critical flow velocity is-first evaluated using the averaged eigenvalue equation. Through the eigenvalue equation, the statistics of vibration frequencies are transformed to yield critical flow velocity statistics. Expressions for the bounds of eigenvalues are obtained, which in turn yield the corresponding bounds for critical flow velocities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modeling the performance behavior of parallel applications to predict the execution times of the applications for larger problem sizes and number of processors has been an active area of research for several years. The existing curve fitting strategies for performance modeling utilize data from experiments that are conducted under uniform loading conditions. Hence the accuracy of these models degrade when the load conditions on the machines and network change. In this paper, we analyze a curve fitting model that attempts to predict execution times for any load conditions that may exist on the systems during application execution. Based on the experiments conducted with the model for a parallel eigenvalue problem, we propose a multi-dimensional curve-fitting model based on rational polynomials for performance predictions of parallel applications in non-dedicated environments. We used the rational polynomial based model to predict execution times for 2 other parallel applications on systems with large load dynamics. In all the cases, the model gave good predictions of execution times with average percentage prediction errors of less than 20%

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the long standing problems in quantum chemistry had been the inability to exploit full spatial and spin symmetry of an electronic Hamiltonian belonging to a non-Abelian point group. Here, we present a general technique which can utilize all the symmetries of an electronic (magnetic) Hamiltonian to obtain its full eigenvalue spectrum. This is a hybrid method based on Valence Bond basis and the basis of constant z-component of the total spin. This technique is applicable to systems with any point group symmetry and is easy to implement on a computer. We illustrate the power of the method by applying it to a model icosahedral half-filled electronic system. This model spans a huge Hilbert space (dimension 1,778,966) and in the largest non-Abelian point group. The C60 molecule has this symmetry and hence our calculation throw light on the higher energy excited states of the bucky ball. This method can also be utilized to study finite temperature properties of strongly correlated systems within an exact diagonalization approach. (C) 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a mechanism for amplitude death in coupled nonlinear dynamical systems on a complex network having interactions with a common environment like external system. We develop a general stability analysis that is valid for any network topology and obtain the threshold values of coupling constants for the onset of amplitude death. An important outcome of our study is a universal relation between the critical coupling strength and the largest nonzero eigenvalue of the coupling matrix. Our results are fully supported by the detailed numerical analysis for different network topologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the linear m= 1 counter-rotating instability in a two-component, nearly Keplerian disc. Our goal is to understand these slow modes in discs orbiting massive black holes in galactic nuclei. They are of interest not only because they are of large spatial scale and can hence dominate observations but also because they can be growing modes that are readily excited by accretion events. Self-gravity being non-local, the eigenvalue problem results in a pair of coupled integral equations, which we derive for a two-component softened gravity disc. We solve this integral eigenvalue problem numerically for various values of mass fraction in the counter-rotating component. The eigenvalues are in general complex, being real only in the absence of the counter-rotating component, or imaginary when both components have identical surface density profiles. Our main results are as follows: (i) the pattern speed appears to be non-negative, with the growth (or damping) rate being larger for larger values of the pattern speed; (ii) for a given value of the pattern speed, the growth (or damping) rate increases as the mass in the counter-rotating component increases; (iii) the number of nodes of the eigenfunctions decreases with increasing pattern speed and growth rate. Observations of lopsided brightness distributions would then be dominated by modes with the least number of nodes, which also possess the largest pattern speeds and growth rates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study zero-sum risk-sensitive stochastic differential games on the infinite horizon with discounted and ergodic payoff criteria. Under certain assumptions, we establish the existence of values and saddle-point equilibria. We obtain our results by studying the corresponding Hamilton-Jacobi-Isaacs equations. Finally, we show that the value of the ergodic payoff criterion is a constant multiple of the maximal eigenvalue of the generators of the associated nonlinear semigroups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we seek to find non-rotating beams with continuous mass and flexural stiffness distributions, that are isospectral to a given uniform rotating beam. The Barcilon-Gottlieb transformation is used to convert the fourth order governing equation of a non-rotating beam, to a canonical fourth order eigenvalue problem. If the coefficients in this canonical equation match with the coefficients of the uniform rotating beam equation, then the non-rotating beam is isospectral to the given rotating beam. The conditions on matching the coefficients leads to a pair of coupled differential equations. We solve these coupled differential equations for a particular case, and thereby obtain a class of non-rotating beams that are isospectral to a uniform rotating beam. However, to obtain isospectral beams, the transformation must leave the boundary conditions invariant. We show that the clamped end boundary condition is always invariant, and for the free end boundary condition to be invariant, we impose certain conditions on the beam characteristics. We also verify numerically that the frequencies of the non-rotating beam obtained using the finite element method (FEM) are the exact frequencies of the uniform rotating beam. Finally, the example of beams having a rectangular cross-section is presented to show the application of our analysis. Since experimental determination of rotating beam frequencies is a difficult task, experiments can be easily conducted on these rectangular non-rotating beams, to calculate the frequencies of the rotating beam. (c) 2012 Elsevier Ltd. All rights reserved.