973 resultados para effective linear solver
Resumo:
In this communication, solid-state/melt extrusion (SSME) is introduced as a novel technique that combines solid-state shear pulverization (SSSP) and conventional twin screw extrusion (TSE) in a single extrusion system. The morphology and property enhancements in a model linear low-density polyethylene/organically modified clay nanocomposite sample fabricated via SSME were compared to those fabricated via SSSP and TSE. The results show that SSME is capable of exfoliating and dispersing the nanofillers similarly to SSSP, while achieving a desirable output rate and producing extrudate similar in form to that from TSE.
Resumo:
Despite the numerous health benefits, population physical activity levels are low and declining with age. A continued increase of Internet access allows for website-delivered interventions to be implemented across age-groups, though older people have typically not been considered for this type of intervention. Therefore, the purpose of this study was to evaluate a website-delivered computer-tailored physical activity intervention, with a specific focus on differences in tailored advice acceptability, website usability, and physical activity change between three age-groups. To mimic "real-life" conditions, the intervention, which provided personalized physical activity feedback delivered via the Internet, was implemented and evaluated without any personal contact for the entire duration of the study. Data were collected online at baseline, 1-week, and 1-month follow-up and analyzed for three age-groups (≤44, 45-59, and ≥60 years) using linear mixed models. Overall, 803 adults received the intervention and 288 completed all measures. The oldest age-group increased physical activity more than the other two groups, spent the most time on the website, though had significantly lower perceived Internet self-confidence scores when compared with the youngest age-group. No differences were found in terms of website usability and tailored advice acceptability. These results suggest that website-delivered physical activity interventions can be suitable and effective for older aged adults.
Resumo:
This paper deals with “The Enchanted Journey,” which is a daily event tour booked by Bollywood-film fans. During the tour, the participants visit original sites of famous Bollywood films at various locations in Switzerland; moreover, the tour includes stops for lunch and shopping. Each day, up to five buses operate the tour. For operational reasons, however, two or more buses cannot stay at the same location simultaneously. Further operative constraints include time windows for all activities and precedence constraints between some activities. The planning problem is how to compute a feasible schedule for each bus. We implement a two-step hierarchical approach. In the first step, we minimize the total waiting time; in the second step, we minimize the total travel time of all buses. We present a basic formulation of this problem as a mixed-integer linear program. We enhance this basic formulation by symmetry-breaking constraints, which reduces the search space without loss of generality. We report on computational results obtained with the Gurobi Solver. Our numerical results show that all relevant problem instances can be solved using the basic formulation within reasonable CPU time, and that the symmetry-breaking constraints reduce that CPU time considerably.
Resumo:
We investigate parallel algorithms for the solution of the Navier–Stokes equations in space-time. For periodic solutions, the discretized problem can be written as a large non-linear system of equations. This system of equations is solved by a Newton iteration. The Newton correction is computed using a preconditioned GMRES solver. The parallel performance of the algorithm is illustrated.
Resumo:
Swarm colonies reproduce social habits. Working together in a group to reach a predefined goal is a social behaviour occurring in nature. Linear optimization problems have been approached by different techniques based on natural models. In particular, Particles Swarm optimization is a meta-heuristic search technique that has proven to be effective when dealing with complex optimization problems. This paper presents and develops a new method based on different penalties strategies to solve complex problems. It focuses on the training process of the neural networks, the constraints and the election of the parameters to ensure successful results and to avoid the most common obstacles when searching optimal solutions.
Resumo:
The analysis of the interdependence between time series has become an important field of research in the last years, mainly as a result of advances in the characterization of dynamical systems from the signals they produce, the introduction of concepts such as generalized and phase synchronization and the application of information theory to time series analysis. In neurophysiology, different analytical tools stemming from these concepts have added to the ‘traditional’ set of linear methods, which includes the cross-correlation and the coherency function in the time and frequency domain, respectively, or more elaborated tools such as Granger Causality. This increase in the number of approaches to tackle the existence of functional (FC) or effective connectivity (EC) between two (or among many) neural networks, along with the mathematical complexity of the corresponding time series analysis tools, makes it desirable to arrange them into a unified-easy-to-use software package. The goal is to allow neuroscientists, neurophysiologists and researchers from related fields to easily access and make use of these analysis methods from a single integrated toolbox. Here we present HERMES (http://hermes.ctb.upm.es), a toolbox for the Matlab® environment (The Mathworks, Inc), which is designed to study functional and effective brain connectivity from neurophysiological data such as multivariate EEG and/or MEG records. It includes also visualization tools and statistical methods to address the problem of multiple comparisons. We believe that this toolbox will be very helpful to all the researchers working in the emerging field of brain connectivity analysis.
Resumo:
The study of the performance of an innovative receiver for linear Fresnel reflectors is carried out in this paper, and the results are analyzed with a physics perspective of the process. The receiver consists of a bundle of tubes parallel to the mirror arrays, resulting on a smaller cross section for the same receiver width as the number of tubes increases, due to the diminution of their diameter. This implies higher heat carrier fluid speeds, and thus, a more effective heat transfer process, although it conveys higher pumping power as well. Mass flow is optimized for different tubes diameters, different impinging radiation intensities and different fluid inlet temperatures. It is found that the best receiver design, namely the tubes diameter that maximizes the exergetic efficiency for given working conditions, is similar for the cases studied. There is a range of tubes diameters that imply similar efficiencies, which can drive to capital cost reduction thanks to the flexibility of design. In addition, the length of the receiver is also optimized, and it is observed that the optimal length is similar for the working conditions considered. As a result of this study, it is found that this innovative receiver provides an optimum design for the whole day, even though impinging radiation intensity varies notably. Thermal features of this type of receiver could be the base of a new generation of concentrated solar power plants with a great potential for cost reduction, because of the simplicity of the system and the lower weigh of the components, plus the flexibility of using the receiver tubes for different streams of the heat carrier fluid.
Resumo:
Machine and Statistical Learning techniques are used in almost all online advertisement systems. The problem of discovering which content is more demanded (e.g. receive more clicks) can be modeled as a multi-armed bandit problem. Contextual bandits (i.e., bandits with covariates, side information or associative reinforcement learning) associate, to each specific content, several features that define the “context” in which it appears (e.g. user, web page, time, region). This problem can be studied in the stochastic/statistical setting by means of the conditional probability paradigm using the Bayes’ theorem. However, for very large contextual information and/or real-time constraints, the exact calculation of the Bayes’ rule is computationally infeasible. In this article, we present a method that is able to handle large contextual information for learning in contextual-bandits problems. This method was tested in the Challenge on Yahoo! dataset at ICML2012’s Workshop “new Challenges for Exploration & Exploitation 3”, obtaining the second place. Its basic exploration policy is deterministic in the sense that for the same input data (as a time-series) the same results are obtained. We address the deterministic exploration vs. exploitation issue, explaining the way in which the proposed method deterministically finds an effective dynamic trade-off based solely in the input-data, in contrast to other methods that use a random number generator.
Resumo:
The analysis of the interdependence between time series has become an important field of research in the last years, mainly as a result of advances in the characterization of dynamical systems from the signals they produce, the introduction of concepts such as generalized and phase synchronization and the application of information theory to time series analysis. In neurophysiology, different analytical tools stemming from these concepts have added to the ?traditional? set of linear methods, which includes the cross-correlation and the coherency function in the time and frequency domain, respectively, or more elaborated tools such as Granger Causality. This increase in the number of approaches to tackle the existence of functional (FC) or effective connectivity (EC) between two (or among many) neural networks, along with the mathematical complexity of the corresponding time series analysis tools, makes it desirable to arrange them into a unified, easy-to-use software package. The goal is to allow neuroscientists, neurophysiologists and researchers from related fields to easily access and make use of these analysis methods from a single integrated toolbox. Here we present HERMES (http://hermes.ctb.upm.es), a toolbox for the Matlab® environment (The Mathworks, Inc), which is designed to study functional and effective brain connectivity from neurophysiological data such as multivariate EEG and/or MEG records. It includes also visualization tools and statistical methods to address the problem of multiple comparisons. We believe that this toolbox will be very helpful to all the researchers working in the emerging field of brain connectivity analysis.
Resumo:
In this article, a novel method to generate an ultra-wideband (UWB) doublet using the cross-phase modulation (XPM) effect is proposed and experimentally demonstrated. The main component of the submitted architecture is a SOA-Mach-Zehnder interferometer (MZI) pumped with a modulated Gaussian pulse. Maximum and minimum conversion points are analyzed through the systems transfer function in order to determinate the most effective operation stage. By tuning different values for the SOAs currents, it is possible to identify a conversion step in which the input pulse is enough large to saturate the SOAMZI, leading to the generation of a UWB doublet pulse.
Resumo:
Direct numerical simulations are performed to analyze the three-dimensional instability of flows over three-dimensional cavities. The flow structures at different Reynolds numbers are investigated by using the spectral-element solver nek5000. As the Reynolds number increasing, the lateral wall effects become more important, the recirculation zone shrinks, the front vortex increases and the flow structure inside of the cavity becomes more complex. Results show that the flow bifurcates from a steady state to an oscillatory regime beyond a value of Reynolds number Re = 1100.
Resumo:
El estudio sísmico en los últimos 50 años y el análisis del comportamiento dinámico del suelo revelan que el comportamiento del suelo es altamente no lineal e histéretico incluso para pequeñas deformaciones. El comportamiento no lineal del suelo durante un evento sísmico tiene un papel predominante en el análisis de la respuesta de sitio. Los análisis unidimensionales de la respuesta sísmica del suelo son a menudo realizados utilizando procedimientos lineales equivalentes, que requieren generalmente pocos parámetros conocidos. Los análisis de respuesta de sitio no lineal tienen el potencial para simular con mayor precisión el comportamiento del suelo, pero su aplicación en la práctica se ha visto limitada debido a la selección de parámetros poco documentadas y poco claras, así como una inadecuada documentación de los beneficios del modelado no lineal en relación al modelado lineal equivalente. En el análisis del suelo, el comportamiento del suelo es aproximado como un sólido Kelvin-Voigt con un módulo de corte elástico y amortiguamiento viscoso. En el análisis lineal y no lineal del suelo se están considerando geometrías y modelos reológicos más complejos. El primero está siendo dirigido por considerar parametrizaciones más ricas del comportamiento linealizado y el segundo mediante el uso de multi-modo de los elementos de resorte-amortiguador con un eventual amortiguador fraccional. El uso del cálculo fraccional está motivado en gran parte por el hecho de que se requieren menos parámetros para lograr la aproximación exacta a los datos experimentales. Basándose en el modelo de Kelvin-Voigt, la viscoelasticidad es revisada desde su formulación más estándar a algunas descripciones más avanzada que implica la amortiguación dependiente de la frecuencia (o viscosidad), analizando los efectos de considerar derivados fraccionarios para representar esas contribuciones viscosas. Vamos a demostrar que tal elección se traduce en modelos más ricos que pueden adaptarse a diferentes limitaciones relacionadas con la potencia disipada, amplitud de la respuesta y el ángulo de fase. Por otra parte, el uso de derivados fraccionarios permite acomodar en paralelo, dentro de un análogo de Kelvin-Voigt generalizado, muchos amortiguadores que contribuyen a aumentar la flexibilidad del modelado para la descripción de los resultados experimentales. Obviamente estos modelos ricos implican muchos parámetros, los asociados con el comportamiento y los relacionados con los derivados fraccionarios. El análisis paramétrico de estos modelos requiere técnicas numéricas eficientemente capaces de simular comportamientos complejos. El método de la Descomposición Propia Generalizada (PGD) es el candidato perfecto para la construcción de este tipo de soluciones paramétricas. Podemos calcular off-line la solución paramétrica para el depósito de suelo, para todos los parámetros del modelo, tan pronto como tales soluciones paramétricas están disponibles, el problema puede ser resuelto en tiempo real, porque no se necesita ningún nuevo cálculo, el solucionador sólo necesita particularizar on-line la solución paramétrica calculada off-line, que aliviará significativamente el procedimiento de solución. En el marco de la PGD, parámetros de los materiales y los diferentes poderes de derivación podrían introducirse como extra-coordenadas en el procedimiento de solución. El cálculo fraccional y el nuevo método de reducción modelo llamado Descomposición Propia Generalizada han sido aplicado en esta tesis tanto al análisis lineal como al análisis no lineal de la respuesta del suelo utilizando un método lineal equivalente. ABSTRACT Studies of earthquakes over the last 50 years and the examination of dynamic soil behavior reveal that soil behavior is highly nonlinear and hysteretic even at small strains. Nonlinear behavior of soils during a seismic event has a predominant role in current site response analysis. One-dimensional seismic ground response analysis are often performed using equivalent-linear procedures, which require few, generally well-known parameters. Nonlinear analyses have the potential to more accurately simulate soil behavior, but their implementation in practice has been limited because of poorly documented and unclear parameter selection, as well as inadequate documentation of the benefits of nonlinear modeling relative to equivalent linear modeling. In soil analysis, soil behaviour is approximated as a Kelvin-Voigt solid with a elastic shear modulus and viscous damping. In linear and nonlinear analysis more complex geometries and more complex rheological models are being considered. The first is being addressed by considering richer parametrizations of the linearized behavior and the second by using multi-mode spring-dashpot elements with eventual fractional damping. The use of fractional calculus is motivated in large part by the fact that fewer parameters are required to achieve accurate approximation of experimental data. Based in Kelvin-Voigt model the viscoelastodynamics is revisited from its most standard formulation to some more advanced description involving frequency-dependent damping (or viscosity), analyzing the effects of considering fractional derivatives for representing such viscous contributions. We will prove that such a choice results in richer models that can accommodate different constraints related to the dissipated power, response amplitude and phase angle. Moreover, the use of fractional derivatives allows to accommodate in parallel, within a generalized Kelvin-Voigt analog, many dashpots that contribute to increase the modeling flexibility for describing experimental findings. Obviously these rich models involve many parameters, the ones associated with the behavior and the ones related to the fractional derivatives. The parametric analysis of all these models require efficient numerical techniques able to simulate complex behaviors. The Proper Generalized Decomposition (PGD) is the perfect candidate for producing such kind of parametric solutions. We can compute off-line the parametric solution for the soil deposit, for all parameter of the model, as soon as such parametric solutions are available, the problem can be solved in real time because no new calculation is needed, the solver only needs particularize on-line the parametric solution calculated off-line, which will alleviate significantly the solution procedure. Within the PGD framework material parameters and the different derivation powers could be introduced as extra-coordinates in the solution procedure. Fractional calculus and the new model reduction method called Proper Generalized Decomposition has been applied in this thesis to the linear analysis and nonlinear soil response analysis using a equivalent linear method.
Resumo:
A Mindlin plate with periodically distributed ribs patterns is analyzed by using homogenization techniques based on asymptotic expansion methods. The stiffness matrix of the homogenized plate is found to be dependent on the geometrical characteristics of the periodical cell, i.e. its skewness, plan shape, thickness variation etc. and on the plate material elastic constants. The computation of this plate stiffness matrix is carried out by averaging over the cell domain some solutions of different periodical boundary value problems. These boundary value problems are defined in variational form by linear first order differential operators on the cell domain and the boundary conditions of the variational equation correspond to a periodic structural problem. The elements of the stiffness matrix of homogenized plate are obtained by linear combinations of the averaged solution functions of the above mentioned boundary value problems. Finally, an illustrative example of application of this homogenization technique to hollowed plates and plate structures with ribs patterns regularly arranged over its area is shown. The possibility of using in the profesional practice the present procedure to the actual analysis of floors of typical buildings is also emphasized.
Resumo:
A filamentary model of “metallic” conduction in layered high temperature superconductive cuprates explains the concurrence of normal state resistivities (Hall mobilities) linear in T (T−2) with optimized superconductivity. The model predicts the lowest temperature T0 for which linearity holds and it also predicts the maximum superconductive transition temperature Tc. The theory abandons the effective medium approximation that includes Fermi liquid as well as all other nonpercolative models in favor of countable smart basis states.
Resumo:
Recent measurements of sedimentation equilibrium and sedimentation velocity have shown that the bacterial cell division protein FtsZ self-associates to form indefinitely long rod-like linear aggregates in the presence of GDP and Mg2+. In the present study, the newly developed technique of non-ideal tracer sedimentation equilibrium was used to measure the effect of high concentrations—up to 150 g/liter—of each of two inert “crowder” proteins, cyanmethemoglobin or BSA, on the thermodynamic activity and state of association of dilute FtsZ under conditions inhibiting (−Mg2+) and promoting (+Mg2+) FtsZ self-association. Analysis of equilibrium gradients of both FtsZ and crowder proteins indicates that, under the conditions of the present experiment, FtsZ interacts with each of the two crowder proteins essentially entirely via steric repulsion, which may be accounted for quantitatively by a simple model in which hemoglobin, albumin, and monomeric FtsZ are modeled as effective spherical hard particles, and each oligomeric species of FtsZ is modeled as an effective hard spherocylinder. The functional dependence of the sedimentation of FtsZ on the concentrations of FtsZ and either crowder indicates that, in the presence of high concentrations of crowder, both the weight-average degree of FtsZ self-association and the range of FtsZ oligomer sizes present in significant abundance are increased substantially.