963 resultados para ecologically adaptive strategies
Resumo:
The manufacturing industry is currently facing unprecedented challenges from changes and disturbances. The sources of these changes and disturbances are of different scope and magnitude. They can be of a commercial nature, or linked to fast product development and design, or purely operational (e.g. rush order, machine breakdown, material shortage etc.). In order to meet these requirements it is increasingly important that a production operation be flexible and is able to adapt to new and more suitable ways of operating. This paper focuses on a new strategy for enabling manufacturing control systems to adapt to changing conditions both in terms of product variation and production system upgrades. The approach proposed is based on two key concepts: (1) An autonomous and distributed approach to manufacturing control based on multi-agent methods in which so called operational agents represent the key physical and logical elements in the production environment to be controlled - for example, products and machines and the control strategies that drive them and (2) An adaptation mechanism based around the evolutionary concept of replicator dynamics which updates the behaviour of newly formed operational agents based on historical performance records in order to be better suited to the production environment. An application of this approach for route selection of similar products in manufacturing flow shops is developed and is illustrated in this paper using an example based on the control of an automobile paint shop.
Resumo:
Picking up an empty milk carton that we believe to be full is a familiar example of adaptive control, because the adaptation process of estimating the carton's weight must proceed simultaneously with the control process of moving the carton to a desired location. Here we show that the motor system initially generates highly variable behavior in such unpredictable tasks but eventually converges to stereotyped patterns of adaptive responses predicted by a simple optimality principle. These results suggest that adaptation can become specifically tuned to identify task-specific parameters in an optimal manner.
Resumo:
The largest damming project to date, the Three Gorges Dam has been built along the Yangtze River (China), the most species-rich river in the Palearctic region. Among 162 species of fish inhabiting the main channel of the upper Yangtze, 44 are endemic and are therefore under serious threat of global extinction from the dam. Accordingly, it is urgently necessary to develop strategies to minimize the impacts of the drastic environmental changes associated with the dam. We sought to identify potential reserves for the endemic species among the 17 tributaries in the upper Yangtze, based on presence/absence data for the 44 endemic species. Potential reserves for the endemic species were identified by characterizing the distribution patterns of endemic species with an adaptive learning algorithm called a "self-organizing map" (SOM). Using this method, we also predicted occurrence probabilities of species in potential reserves based on the distribution patterns of communities. Considering both SOM model results and actual knowledge of the biology of the considered species, our results suggested that 24 species may survive in the tributaries, 14 have an uncertain future, and 6 have a high probability of becoming extinct after dam filling.
Resumo:
Ecological and physiological features of the planktonic copepod Calanus sinicus in the southern Yellow Sea in summer were studied to reveal its life history strategy. From the coastal shallow waters to the central part of the southern Yellow Sea, a shift of the stage composition occurs from being dominated by the egg-nauplius stage to being dominated by the fifth copepodite (CV) stage. Most CVs reside in the Yellow Sea Cold Water Mass (YSCWM), where both temperature and food abundance are low. CVs in the YSCWM have longer body lengths, heavier body weights and higher carbon contents than those outside the YSCWM. Onboard incubations show that the development of CVs in the YSCWM is suspended. Energy conservation, development suspension and lack of diel vertical migration (DVM) behavior suggest a diapause status for the CVs in the YSCWM, although vertical distribution patterns indicate the CV individuals are not fully synchronous in physiology and development. This adaptive oversummering strategy would help C. sinicus to live through the warm and food-limited summer in the central part of the southern Yellow Sea; both low temperature and low food supply are necessary for CV to maintain the resting state in the YSCWM. Calanus sinicus exhibits different life history strategies in different regions of the southern Yellow Sea in summer.
Resumo:
The emergent behaviour of autonomic systems, together with the scale of their deployment, impedes prediction of the full range of configuration and failure scenarios; thus it is not possible to devise management and recovery strategies to cover all possible outcomes. One solution to this problem is to embed self-managing and self-healing abilities into such applications. Traditional design approaches favour determinism, even when unnecessary. This can lead to conflicts between the non-functional requirements. Natural systems such as ant colonies have evolved cooperative, finely tuned emergent behaviours which allow the colonies to function at very large scale and to be very robust, although non-deterministic. Simple pheromone-exchange communication systems are highly efficient and are a major contribution to their success. This paper proposes that we look to natural systems for inspiration when designing architecture and communications strategies, and presents an election algorithm which encapsulates non-deterministic behaviour to achieve high scalability, robustness and stability.
Resumo:
Natural hazards trigger disasters, the scale of which is largely determined by vulnerability. Developing countries suffer the most from disasters due to various conditions of vulnerability which exist and there is an opportunity after disasters to take mitigative action. NGOs implementing post-disaster rehabilitation projects must be able to address the issues causing communities to live at risk of disaster and therefore must build dynamic capacity, capabilities and competencies, enabling them to operate in unstable environments. This research is built upon a theoretical framework of dynamic competency established by combining elements of disaster management, strategic management and project management theory. A number of NGOs which have implemented reconstruction and rehabilitation projects both in Sri Lanka following the Asian Tsunami and Bangladesh following Cyclone Sidr are being investigated in great depth using a causal mapping procedure. ‘Event’ specific maps have been developed for each organization in each disaster. This data will be analysed with a view to discovering the strategies which lead to vulnerability reduction in post-disaster communities and the competencies that NGOs must possess in order to achieve favourable outcomes. It is hypothesized that by building organizational capacity, capabilities and competencies to be dynamic in nature, while focusing on a more emergent strategic approach, with emphasis on adaptive capability and innovation, NGOs will be better equipped to contribute to sustainable community development through reconstruction. We believe that through this study it will be possible to glean a new understanding of social processes that emerge within community rehabilitation projects.
Resumo:
In this paper, we investigate adaptive linear combinations of graph coloring heuristics with a heuristic modifier to address the examination timetabling problem. We invoke a normalisation strategy for each parameter in order to generalise the specific problem data. Two graph coloring heuristics were used in this study (largest degree and saturation degree). A score for the difficulty of assigning each examination was obtained from an adaptive linear combination of these two heuristics and examinations in the list were ordered based on this value. The examinations with the score value representing the higher difficulty were chosen for scheduling based on two strategies. We tested for single and multiple heuristics with and without a heuristic modifier with different combinations of weight values for each parameter on the Toronto and ITC2007 benchmark data sets. We observed that the combination of multiple heuristics with a heuristic modifier offers an effective way to obtain good solution quality. Experimental results demonstrate that our approach delivers promising results. We conclude that this adaptive linear combination of heuristics is a highly effective method and simple to implement.
Resumo:
Correctly modelling and reasoning with uncertain information from heterogeneous sources in large-scale systems is critical when the reliability is unknown and we still want to derive adequate conclusions. To this end, context-dependent merging strategies have been proposed in the literature. In this paper we investigate how one such context-dependent merging strategy (originally defined for possibility theory), called largely partially maximal consistent subsets (LPMCS), can be adapted to Dempster-Shafer (DS) theory. We identify those measures for the degree of uncertainty and internal conflict that are available in DS theory and show how they can be used for guiding LPMCS merging. A simplified real-world power distribution scenario illustrates our framework. We also briefly discuss how our approach can be incorporated into a multi-agent programming language, thus leading to better plan selection and decision making.
Resumo:
In this study, we investigate an adaptive decomposition and ordering strategy that automatically divides examinations into difficult and easy sets for constructing an examination timetable. The examinations in the difficult set are considered to be hard to place and hence are listed before the ones in the easy set in the construction process. Moreover, the examinations within each set are ordered using different strategies based on graph colouring heuristics. Initially, the examinations are placed into the easy set. During the construction process, examinations that cannot be scheduled are identified as the ones causing infeasibility and are moved forward in the difficult set to ensure earlier assignment in subsequent attempts. On the other hand, the examinations that can be scheduled remain in the easy set.
Within the easy set, a new subset called the boundary set is introduced to accommodate shuffling strategies to change the given ordering of examinations. The proposed approach, which incorporates different ordering and shuffling strategies, is explored on the Carter benchmark problems. The empirical results show that the performance of our algorithm is broadly comparable to existing constructive approaches.
Resumo:
Social enterprises have been placed at the centre of Big Society politics and an emphasis on the local as a site for experimentation and service delivery. Nationally, this has been supported by legislation in community transfer and procurement, social finance and new intermediaries to strengthen skills and loan readiness. This paper examines the role of social enterprises involved in urban development in Northern Ireland and highlights the multiple ethics, legitimation strategies and modalities that are necessary for sustainable forms of progressive regeneration. The paper concludes by stressing the possibilities of a more independent and reformist social economy and how this offers some practical alternatives to the enthusiasm for neoliberal policies in the local state.
Resumo:
The study of electricity markets operation has been gaining an increasing importance in last years, as result of the new challenges that the electricity markets restructuring produced. This restructuring increased the competitiveness of the market, but with it its complexity. The growing complexity and unpredictability of the market’s evolution consequently increases the decision making difficulty. Therefore, the intervenient entities are forced to rethink their behaviour and market strategies. Currently, lots of information concerning electricity markets is available. These data, concerning innumerous regards of electricity markets operation, is accessible free of charge, and it is essential for understanding and suitably modelling electricity markets. This paper proposes a tool which is able to handle, store and dynamically update data. The development of the proposed tool is expected to be of great importance to improve the comprehension of electricity markets and the interactions among the involved entities.
Resumo:
Electricity markets are complex environments with very particular characteristics. MASCEM is a market simulator developed to allow deep studies of the interactions between the players that take part in the electricity market negotiations. This paper presents a new proposal for the definition of MASCEM players’ strategies to negotiate in the market. The proposed methodology is multiagent based, using reinforcement learning algorithms to provide players with the capabilities to perceive the changes in the environment, while adapting their bids formulation according to their needs, using a set of different techniques that are at their disposal.
Resumo:
Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM is a multi-agent electricity market simulator to model market players and simulate their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. MASCEM provides several dynamic strategies for agents’ behavior. This paper presents a method that aims to provide market players with strategic bidding capabilities, allowing them to obtain the higher possible gains out of the market. This method uses a reinforcement learning algorithm to learn from experience how to choose the best from a set of possible bids. These bids are defined accordingly to the cost function that each producer presents.
Resumo:
Dragonflies show unique and superior flight performances than most of other insect species and birds. They are equipped with two pairs of independently controlled wings granting an unmatchable flying performance and robustness. In this paper, it is presented an adaptive scheme controlling a nonlinear model inspired in a dragonfly-like robot. It is proposed a hybrid adaptive (HA) law for adjusting the parameters analyzing the tracking error. At the current stage of the project it is considered essential the development of computational simulation models based in the dynamics to test whether strategies or algorithms of control, parts of the system (such as different wing configurations, tail) as well as the complete system. The performance analysis proves the superiority of the HA law over the direct adaptive (DA) method in terms of faster and improved tracking and parameter convergence.
Resumo:
Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multi-agent electricity market simulator that models market players and simulates their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. This paper presents a methodology to provide decision support to electricity market negotiating players. This model allows integrating different strategic approaches for electricity market negotiations, and choosing the most appropriate one at each time, for each different negotiation context. This methodology is integrated in ALBidS (Adaptive Learning strategic Bidding System) – a multiagent system that provides decision support to MASCEM's negotiating agents so that they can properly achieve their goals. ALBidS uses artificial intelligence methodologies and data analysis algorithms to provide effective adaptive learning capabilities to such negotiating entities. The main contribution is provided by a methodology that combines several distinct strategies to build actions proposals, so that the best can be chosen at each time, depending on the context and simulation circumstances. The choosing process includes reinforcement learning algorithms, a mechanism for negotiating contexts analysis, a mechanism for the management of the efficiency/effectiveness balance of the system, and a mechanism for competitor players' profiles definition.