918 resultados para dynamic factor models
Resumo:
We consider forecasting with factors, variables and both, modeling in-sample using Autometrics so all principal components and variables can be included jointly, while tackling multiple breaks by impulse-indicator saturation. A forecast-error taxonomy for factor models highlights the impacts of location shifts on forecast-error biases. Forecasting US GDP over 1-, 4- and 8-step horizons using the dataset from Stock and Watson (2009) updated to 2011:2 shows factor models are more useful for nowcasting or short-term forecasting, but their relative performance declines as the forecast horizon increases. Forecasts for GDP levels highlight the need for robust strategies, such as intercept corrections or differencing, when location shifts occur as in the recent financial crisis.
Resumo:
This paper traces the developments of credit risk modeling in the past 10 years. Our work can be divided into two parts: selecting articles and summarizing results. On the one hand, by constructing an ordered logit model on historical Journal of Economic Literature (JEL) codes of articles about credit risk modeling, we sort out articles which are the most related to our topic. The result indicates that the JEL codes have become the standard to classify researches in credit risk modeling. On the other hand, comparing with the classical review Altman and Saunders(1998), we observe some important changes of research methods of credit risk. The main finding is that current focuses on credit risk modeling have moved from static individual-level models to dynamic portfolio models.
Resumo:
Estudos recentes apontam que diversas estratégias implementadas em hedge funds geram retornos com características não lineares. Seguindo as sugestões encontradas no paper de Agarwal e Naik (2004), este trabalho mostra que uma série de hedge funds dentro da indústria de fundos de investimentos no Brasil apresenta retornos que se assemelham ao de uma estratégia em opções de compra e venda no índice de mercado Bovespa. Partindo de um modelo de fatores, introduzimos um índice referenciado no retorno sobre opções de modo que tal fator possa explicar melhor que os tradicionais fatores de risco a característica não linear dos retornos dos fundos de investimento.
Resumo:
Although there has been substantial research on long-run co-movement (common trends) in the empirical macroeconomics literature. little or no work has been done on short run co-movement (common cycles). Investigating common cycles is important on two grounds: first. their existence is an implication of most dynamic macroeconomic models. Second. they impose important restrictions on dynamic systems. Which can be used for efficient estimation and forecasting. In this paper. using a methodology that takes into account short- and long-run co-movement restrictions. we investigate their existence in a multivariate data set containing U.S. per-capita output. consumption. and investment. As predicted by theory. the data have common trends and common cycles. Based on the results of a post-sample forecasting comparison between restricted and unrestricted systems. we show that a non-trivial loss of efficiency results when common cycles are ignored. If permanent shocks are associated with changes in productivity. the latter fails to be an important source of variation for output and investment contradicting simple aggregate dynamic models. Nevertheless. these shocks play a very important role in explaining the variation of consumption. Showing evidence of smoothing. Furthermore. it seems that permanent shocks to output play a much more important role in explaining unemployment fluctuations than previously thought.
Resumo:
Este trabalho visa analisar a dinâmica das expectativas de inflação em função das condições macroeconômicas. Para tal, extraímos as curvas de inflação implícita na curva de títulos públicos pré-fixados e estimamos um modelo de fatores dinâmicos para sua estrutura a termo. Os fatores do modelo correspondem ao nível, inclinação e curvatura da estrutura a termo, que variam ao longo do tempo conforme os movimentos no câmbio, na inflação, no índice de commodities e no risco Brasil implícito no CDS. Após um choque de um desvio padrão no câmbio ou na inflação, a curva de inflação implícita se desloca positivamente, especialmente no curto prazo e no longo prazo. Um choque no índice de commodities também desloca a curva de inflação implícita positivamente, afetando especialmente a parte curta da curva. Em contraste, um choque no risco Brasil desloca a curva de inflação implícita paralelamente para baixo.
Resumo:
This paper constructs an indicator of Brazilian GDP at the monthly ftequency. The peculiar instability and abrupt changes of regimes in the dynamic behavior of the Brazilian business cycle were explicitly modeled within nonlinear ftameworks. In particular, a Markov switching dynarnic factor model was used to combine several macroeconomic variables that display simultaneous comovements with aggregate economic activity. The model generates as output a monthly indicator of the Brazilian GDP and real time probabilities of the current phase of the Brazilian business cycle. The monthly indicator shows a remarkable historical conformity with cyclical movements of GDP. In addition, the estimated filtered probabilities predict ali recessions in sample and out-of-sample. The ability of the indicator in linear forecasting growth rates of GDP is also examined. The estimated indicator displays a better in-sample and out-of-sample predictive performance in forecasting growth rates of real GDP, compared to a linear autoregressive model for GDP. These results suggest that the estimated monthly indicator can be used to forecast GDP and to monitor the state of the Brazilian economy in real time.
Resumo:
This paper presents new methodology for making Bayesian inference about dy~ o!s for exponential famiIy observations. The approach is simulation-based _~t> use of ~vlarkov chain Monte Carlo techniques. A yletropolis-Hastings i:U~UnLlllll 1::; combined with the Gibbs sampler in repeated use of an adjusted version of normal dynamic linear models. Different alternative schemes are derived and compared. The approach is fully Bayesian in obtaining posterior samples for state parameters and unknown hyperparameters. Illustrations to real data sets with sparse counts and missing values are presented. Extensions to accommodate for general distributions for observations and disturbances. intervention. non-linear models and rnultivariate time series are outlined.
Resumo:
We propose mo deIs to analyze animal growlh data wilh lhe aim of eslimating and predicting quanlities of Liological and economical interest such as the maturing rate and asymptotic weight. lt is also studied lhe effect of environmenlal facLors of relevant influence in the growlh processo The models considered in this paper are based on an extension and specialization of the dynamic hierarchical model (Gamerman " Migon, 1993) lo a non-Iinear growlh curve sdLillg, where some of the growth curve parameters are considered cxchangeable among lhe unils. The inferencc for thcse models are appruximale conjugale analysis Lascd on Taylor series cxpallsiulIs aliei linear Bayes procedures.
Resumo:
Com o aumento do número de gestores especializados em um número cada vez maior de possibilidades de investimentos na indústria de fundos brasileira, os fundos Multigestor se tornaram uma alternativa para os investidores que procuram diversificar seus investimentos e delegam às instituições financeiras o trabalho de alocar os recursos dentro das diferentes estratégias e fundos existentes no mercado. O intuito deste estudo é avaliar a capacidade de gerar retornos anormais (alfa) dos fundos de fundos da indústria brasileira, classificados como Fundos Multimercados Multigestor. Para isso foi estudada uma amostra com 1.421 fundos Multigestor com tributação de Longo Prazo no período de janeiro de 2005 a dezembro de 2011. A análise dos resultados encontrados através de regressões de modelos de vários fatores, derivados do modelo de Jensen (1968), sugere que apenas 3,03% dos fundos estudados conseguem adicionar valor a seus cotistas. Foram estudadas ainda as três principais fontes potenciais de geração de alfa dos fundos de fundos, a escolha das estratégias que compõe a carteira do fundo (alocação estratégica), a antecipação de movimentos de mercado (market timing) e a capacidade selecionar os melhores fundos dentro de cada estratégia (seleção de fundos). A partir da inclusão de termos quadráticos, conforme proposto pelos modelos de Treynor e Mazuy (1966) pode-se verificar que os fundos Multigestor, em média, não conseguem adicionar valor tentando antecipar movimentos de mercado (market timing). Através da construção de uma variável explicativa com a composição estratégica de cada fundo da amostra em cada período de tempo, pode-se verificar que os gestores de fundos de fundos, em média, também fracassam ao tentar selecionar os melhores fundos/gestores da indústria. Já a escolha das estratégias que compõe a carteira do fundo (alocação estratégica) mostrou contribuir positivamente para o retorno dos fundos. Ainda foi avaliada a capacidade de gerar alfa antes dos custos, o que elevou o percentual de fundos com alfa positivo para 6,39% dos fundos estudados, mas foi incapaz de alterar o sinal do alfa médio, que permaneceu negativo.
Resumo:
Differences-in-Differences (DID) is one of the most widely used identification strategies in applied economics. However, how to draw inferences in DID models when there are few treated groups remains an open question. We show that the usual inference methods used in DID models might not perform well when there are few treated groups and errors are heteroskedastic. In particular, we show that when there is variation in the number of observations per group, inference methods designed to work when there are few treated groups tend to (under-) over-reject the null hypothesis when the treated groups are (large) small relative to the control groups. This happens because larger groups tend to have lower variance, generating heteroskedasticity in the group x time aggregate DID model. We provide evidence from Monte Carlo simulations and from placebo DID regressions with the American Community Survey (ACS) and the Current Population Survey (CPS) datasets to show that this problem is relevant even in datasets with large numbers of observations per group. We then derive an alternative inference method that provides accurate hypothesis testing in situations where there are few treated groups (or even just one) and many control groups in the presence of heteroskedasticity. Our method assumes that we can model the heteroskedasticity of a linear combination of the errors. We show that this assumption can be satisfied without imposing strong assumptions on the errors in common DID applications. With many pre-treatment periods, we show that this assumption can be relaxed. Instead, we provide an alternative inference method that relies on strict stationarity and ergodicity of the time series. Finally, we consider two recent alternatives to DID when there are many pre-treatment periods. We extend our inference methods to linear factor models when there are few treated groups. We also derive conditions under which a permutation test for the synthetic control estimator proposed by Abadie et al. (2010) is robust to heteroskedasticity and propose a modification on the test statistic that provided a better heteroskedasticity correction in our simulations.
Resumo:
Differences-in-Differences (DID) is one of the most widely used identification strategies in applied economics. However, how to draw inferences in DID models when there are few treated groups remains an open question. We show that the usual inference methods used in DID models might not perform well when there are few treated groups and errors are heteroskedastic. In particular, we show that when there is variation in the number of observations per group, inference methods designed to work when there are few treated groups tend to (under-) over-reject the null hypothesis when the treated groups are (large) small relative to the control groups. This happens because larger groups tend to have lower variance, generating heteroskedasticity in the group x time aggregate DID model. We provide evidence from Monte Carlo simulations and from placebo DID regressions with the American Community Survey (ACS) and the Current Population Survey (CPS) datasets to show that this problem is relevant even in datasets with large numbers of observations per group. We then derive an alternative inference method that provides accurate hypothesis testing in situations where there are few treated groups (or even just one) and many control groups in the presence of heteroskedasticity. Our method assumes that we know how the heteroskedasticity is generated, which is the case when it is generated by variation in the number of observations per group. With many pre-treatment periods, we show that this assumption can be relaxed. Instead, we provide an alternative application of our method that relies on assumptions about stationarity and convergence of the moments of the time series. Finally, we consider two recent alternatives to DID when there are many pre-treatment groups. We extend our inference method to linear factor models when there are few treated groups. We also propose a permutation test for the synthetic control estimator that provided a better heteroskedasticity correction in our simulations than the test suggested by Abadie et al. (2010).
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
O objetivo desta dissertação foi verificar a importância dos fatores termodinâmicos na ocorrência de eventos extremos de precipitação na Cidade de Belém (PA) e região metropolitana, no período de agosto de 2008 a dezembro de 2009. Para tal, foram utilizados dados de precipitação e radiossondagens. Para análise das condições termodinâmicas e dinâmicas foram utilizadas imagens de satélite, cartas de superfície e análise do diagrama SKEW T LOG P. O estudo da termodinâmica da atmosfera foi realizado a luz das teorias da Energia Potencial Disponível para a Convecção (CAPE) e, também, da Energia de Inibição da Convecção (CINE). Foi utilizado o método dos decis para classificar os eventos extremos de precipitação a fim de associá-los aos valores da CAPE e da CINE com o objetivo de verificar o valor destes índices quando da ocorrência dos eventos extremos. Verificou-se que a região estudada possui forte atividade convectiva durante todo o ano, haja vista que seus valores médios mensais variam entre 900 J/kg e 1900 J/kg. Foi visto, também, que nem sempre CAPE alta e CINE baixa determinam precipitação. Esta situação determina o potencial para a convecção profunda, mas para converter este potencial em precipitação existe a necessidade da forçante dinâmica. Os resultados mostraram que quando o processo de precipitação dependeu, exclusivamente, da CAPE, foi necessário haver um valor alto para poder gerar convecção profunda e por consequência precipitação, enquanto, que no processo de precipitação com contribuição dinâmica não foi necessário um valor tão significativo da CAPE, neste caso, não ultrapassou a 1000 J/kg. A CINE esteve, sempre, menor no período chuvoso apresentando valores médios mensais menores que 300 J/kg. Isto não quer dizer que quanto menor a CINE maior será a precipitação. Quando a inibição está presente a instabilidade vai crescendo ao longo do dia determinando, com isso, nuvens com um desenvolvimento vertical mais acentuado, assim os pontos onde os inibidores enfraquecem primeiro, serão os pontos preferenciais para o disparo da tempestade. Logo, quando a instabilidade estiver alta e existir o mecanismo inibidor (CINE), em uma grande área, os locais mais propícios aos disparos das tempestades são os pontos onde a CINE e o NCE começam a diminuir e a inversão térmica, que por vezes acontece, começa a ser quebrada. Durante a execução desta pesquisa ficou claro que para a ocorrência de eventos extremos de precipitação, no período chuvoso, existe necessidade da influência da ITCZ e no período seco, conforme se observa no estudo de caso realizado para o mês de outubro o fator dinâmico que mais influencia é a Linha de Instabilidade (LI).
Resumo:
Pós-graduação em Matematica Aplicada e Computacional - FCT