875 resultados para document clustering


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Automated process discovery techniques aim at extracting process models from information system logs. Existing techniques in this space are effective when applied to relatively small or regular logs, but generate spaghetti-like and sometimes inaccurate models when confronted to logs with high variability. In previous work, trace clustering has been applied in an attempt to reduce the size and complexity of automatically discovered process models. The idea is to split the log into clusters and to discover one model per cluster. This leads to a collection of process models – each one representing a variant of the business process – as opposed to an all-encompassing model. Still, models produced in this way may exhibit unacceptably high complexity and low fitness. In this setting, this paper presents a two-way divide-and-conquer process discovery technique, wherein the discovered process models are split on the one hand by variants and on the other hand hierarchically using subprocess extraction. Splitting is performed in a controlled manner in order to achieve user-defined complexity or fitness thresholds. Experiments on real-life logs show that the technique produces collections of models substantially smaller than those extracted by applying existing trace clustering techniques, while allowing the user to control the fitness of the resulting models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Newsletter ACM SIGIR Forum: The Seventeenth Australian Document Computing Symposium was held in Dunedin, New Zealand on the 5th and 6th of December 2012. In total twenty four papers were submitted. From those eleven were accepted for full presentation and 8 for short presentation. A poster session was held jointly with the Australasian Language Technology Workshop.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we describe the approaches adopted to generate the runs submitted to ImageCLEFPhoto 2009 with an aim to promote document diversity in the rankings. Four of our runs are text based approaches that employ textual statistics extracted from the captions of images, i.e. MMR [1] as a state of the art method for result diversification, two approaches that combine relevance information and clustering techniques, and an instantiation of Quantum Probability Ranking Principle. The fifth run exploits visual features of the provided images to re-rank the initial results by means of Factor Analysis. The results reveal that our methods based on only text captions consistently improve the performance of the respective baselines, while the approach that combines visual features with textual statistics shows lower levels of improvements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time series classification has been extensively explored in many fields of study. Most methods are based on the historical or current information extracted from data. However, if interest is in a specific future time period, methods that directly relate to forecasts of time series are much more appropriate. An approach to time series classification is proposed based on a polarization measure of forecast densities of time series. By fitting autoregressive models, forecast replicates of each time series are obtained via the bias-corrected bootstrap, and a stationarity correction is considered when necessary. Kernel estimators are then employed to approximate forecast densities, and discrepancies of forecast densities of pairs of time series are estimated by a polarization measure, which evaluates the extent to which two densities overlap. Following the distributional properties of the polarization measure, a discriminant rule and a clustering method are proposed to conduct the supervised and unsupervised classification, respectively. The proposed methodology is applied to both simulated and real data sets, and the results show desirable properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary aim of this paper was to investigate heterogeneity in language abilities of children with a confirmed diagnosis of an ASD (N = 20) and children with typical development (TD; N = 15). Group comparisons revealed no differences between ASD and TD participants on standard clinical assessments of language ability, reading ability or nonverbal intelligence. However, a hierarchical cluster analysis based on spoken nonword repetition and sentence repetition identified two clusters within the combined group of ASD and TD participants. The first cluster (N = 6) presented with significantly poorer performances than the second cluster (N = 29) on both of the clustering variables in addition to single word and nonword reading. The significant differences between the two clusters occur within a context of Cluster 1 having language impairment and a tendency towards more severe autistic symptomatology. Differences between the oral language abilities of the first and second clusters are considered in light of diagnosis, attention and verbal short term memory skills and reading impairment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents a study of how humans perceive and judge the relevance of documents. Humans are adept at making reasonably robust and quick decisions about what information is relevant to them, despite the ever increasing complexity and volume of their surrounding information environment. The literature on document relevance has identified various dimensions of relevance (e.g., topicality, novelty, etc.), however little is understood about how these dimensions may interact. We performed a crowdsourced study of how human subjects judge two relevance dimensions in relation to document snippets retrieved from an internet search engine. The order of the judgment was controlled. For those judgments exhibiting an order effect, a q–test was performed to determine whether the order effects can be explained by a quantum decision model based on incompatible decision perspectives. Some evidence of incompatibility was found which suggests incompatible decision perspectives is appropriate for explaining interacting dimensions of relevance in such instances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given the drawbacks for using geo-political areas in mapping outcomes unrelated to geo-politics, a compromise is to aggregate and analyse data at the grid level. This has the advantage of allowing spatial smoothing and modelling at a biologically or physically relevant scale. This article addresses two consequent issues: the choice of the spatial smoothness prior and the scale of the grid. Firstly, we describe several spatial smoothness priors applicable for grid data and discuss the contexts in which these priors can be employed based on different aims. Two such aims are considered, i.e., to identify regions with clustering and to model spatial dependence in the data. Secondly, the choice of the grid size is shown to depend largely on the spatial patterns. We present a guide on the selection of spatial scales and smoothness priors for various point patterns based on the two aims for spatial smoothing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel method for improving hierarchical speaker clustering in the tasks of speaker diarization and speaker linking. In hierarchical clustering, a tree can be formed that demonstrates various levels of clustering. We propose a ratio that expresses the impact of each cluster on the formation of this tree and use this to rescale cluster scores. This provides score normalisation based on the impact of each cluster. We use a state-of-the-art speaker diarization and linking system across the SAIVT-BNEWS corpus to show that our proposed impact ratio can provide a relative improvement of 16% in diarization error rate (DER).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Empirical evidence shows that repositories of business process models used in industrial practice contain significant amounts of duplication. This duplication arises for example when the repository covers multiple variants of the same processes or due to copy-pasting. Previous work has addressed the problem of efficiently retrieving exact clones that can be refactored into shared subprocess models. This article studies the broader problem of approximate clone detection in process models. The article proposes techniques for detecting clusters of approximate clones based on two well-known clustering algorithms: DBSCAN and Hi- erarchical Agglomerative Clustering (HAC). The article also defines a measure of standardizability of an approximate clone cluster, meaning the potential benefit of replacing the approximate clones with a single standardized subprocess. Experiments show that both techniques, in conjunction with the proposed standardizability measure, accurately retrieve clusters of approximate clones that originate from copy-pasting followed by independent modifications to the copied fragments. Additional experiments show that both techniques produce clusters that match those produced by human subjects and that are perceived to be standardizable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE The purpose of this study was to demonstrate the potential of near infrared (NIR) spectroscopy for characterizing the health and degenerative state of articular cartilage based on the components of the Mankin score. METHODS Three models of osteoarthritic degeneration induced in laboratory rats by anterior cruciate ligament (ACL) transection, meniscectomy (MSX), and intra-articular injection of monoiodoacetate (1 mg) (MIA) were used in this study. Degeneration was induced in the right knee joint; each model group consisted of 12 rats (N = 36). After 8 weeks, the animals were euthanized and knee joints were collected. A custom-made diffuse reflectance NIR probe of 5-mm diameter was placed on the tibial and femoral surfaces, and spectral data were acquired from each specimen in the wave number range of 4,000 to 12,500 cm(-1). After spectral data acquisition, the specimens were fixed and safranin O staining (SOS) was performed to assess disease severity based on the Mankin scoring system. Using multivariate statistical analysis, with spectral preprocessing and wavelength selection technique, the spectral data were then correlated to the structural integrity (SI), cellularity (CEL), and matrix staining (SOS) components of the Mankin score for all the samples tested. RESULTS ACL models showed mild cartilage degeneration, MSX models had moderate degeneration, and MIA models showed severe cartilage degenerative changes both morphologically and histologically. Our results reveal significant linear correlations between the NIR absorption spectra and SI (R(2) = 94.78%), CEL (R(2) = 88.03%), and SOS (R(2) = 96.39%) parameters of all samples in the models. In addition, clustering of the samples according to their level of degeneration, with respect to the Mankin components, was also observed. CONCLUSIONS NIR spectroscopic probing of articular cartilage can potentially provide critical information about the health of articular cartilage matrix in early and advanced stages of osteoarthritis (OA). CLINICAL RELEVANCE This rapid nondestructive method can facilitate clinical appraisal of articular cartilage integrity during arthroscopic surgery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Description of a patient's injuries is recorded in narrative text form by hospital emergency departments. For statistical reporting, this text data needs to be mapped to pre-defined codes. Existing research in this field uses the Naïve Bayes probabilistic method to build classifiers for mapping. In this paper, we focus on providing guidance on the selection of a classification method. We build a number of classifiers belonging to different classification families such as decision tree, probabilistic, neural networks, and instance-based, ensemble-based and kernel-based linear classifiers. An extensive pre-processing is carried out to ensure the quality of data and, in hence, the quality classification outcome. The records with a null entry in injury description are removed. The misspelling correction process is carried out by finding and replacing the misspelt word with a soundlike word. Meaningful phrases have been identified and kept, instead of removing the part of phrase as a stop word. The abbreviations appearing in many forms of entry are manually identified and only one form of abbreviations is used. Clustering is utilised to discriminate between non-frequent and frequent terms. This process reduced the number of text features dramatically from about 28,000 to 5000. The medical narrative text injury dataset, under consideration, is composed of many short documents. The data can be characterized as high-dimensional and sparse, i.e., few features are irrelevant but features are correlated with one another. Therefore, Matrix factorization techniques such as Singular Value Decomposition (SVD) and Non Negative Matrix Factorization (NNMF) have been used to map the processed feature space to a lower-dimensional feature space. Classifiers with these reduced feature space have been built. In experiments, a set of tests are conducted to reflect which classification method is best for the medical text classification. The Non Negative Matrix Factorization with Support Vector Machine method can achieve 93% precision which is higher than all the tested traditional classifiers. We also found that TF/IDF weighting which works well for long text classification is inferior to binary weighting in short document classification. Another finding is that the Top-n terms should be removed in consultation with medical experts, as it affects the classification performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project is a step forward in the study of text mining where enhanced text representation with semantic information plays a significant role. It develops effective methods of entity-oriented retrieval, semantic relation identification and text clustering utilizing semantically annotated data. These methods are based on enriched text representation generated by introducing semantic information extracted from Wikipedia into the input text data. The proposed methods are evaluated against several start-of-art benchmarking methods on real-life data-sets. In particular, this thesis improves the performance of entity-oriented retrieval, identifies different lexical forms for an entity relation and handles clustering documents with multiple feature spaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of ‘topic’ concepts has shown improved search performance, given a query, by bringing together relevant documents which use different terms to describe a higher level concept. In this paper, we propose a method for discovering and utilizing concepts in indexing and search for a domain specific document collection being utilized in industry. This approach differs from others in that we only collect focused concepts to build the concept space and that instead of turning a user’s query into a concept based query, we experiment with different techniques of combining the original query with a concept query. We apply the proposed approach to a real-world document collection and the results show that in this scenario the use of concept knowledge at index and search can improve the relevancy of results.