907 resultados para dispersion decreasing fibers
Resumo:
The 10-valent pneumococcal conjugate vaccine (PCV10) became available in Portugal in mid-2009 and the 13-valent vaccine (PCV13) in early 2010. The incidence of invasive pneumococcal disease (IPD) in patients aged under 18 years decreased from 8.19 cases per 100,000 in 2008–09 to 4.52/100,000 in 2011–12. However, IPD incidence due to the serotypes included in the 7-valent conjugate vaccine (PCV7) in children aged under two years remained constant. This fall resulted from significant decreases in the number of cases due to: (i) the additional serotypes included in PCV10 and PCV13 (1, 5, 7F; from 37.6% to 20.6%), particularly serotype 1 in older children; and (ii) the additional serotypes included in PCV13 (3, 6A, 19A; from 31.6% to 16.2%), particularly serotype 19A in younger children. The decrease in serotype 19A before vaccination indicates that it was not triggered by PCV13 administration. The decrease of serotype 1 in all groups, concomitant with the introduction of PCV10, is also unlikely to have been triggered by vaccination, although PCVs may have intensified and supported these trends. PCV13 serotypes remain major causes of IPD, accounting for 63.2% of isolates recovered in Portugal in 2011–12, highlighting the potential role of enhanced vaccination in reducing paediatric IPD in Portugal.
Resumo:
RESTAPIA 2012 - Int. Conf. on Rammed Earth Conservation, Valencia, 21-23 June 2012
Resumo:
Dissertation to obtain the degree of Master in Chemical and Biochemical Engineering
Resumo:
Probing micro-/nano-sized surface conformations, which are ubiquitous in biological systems, by using liquid crystal droplets, which change their ordering and optical appearance in response to the presence of more than ten times smaller cellulose based micro/nano fibers, might find new uses in a range of biological environments and sensors. Previous studies indicate that electrospun micro/nano cellulosic fibers produced from liquid crystalline solutions could present a twisted form [1]. In this work, we study the structures of nematic liquid crystal droplets threaded by cellulose fibers prepared from liquid crystalline and isotropic solutions as well as droplets pierced by spider-made fibers [2]. Planar anchoring at the fibers and planar and homeotropic at the drop surfaces allowed probing cellulose fibers different helical structures as well as aligned filaments.
Resumo:
Clayish earth-based mortars are been recognized, all over the world, as eco-efficient products for plastering. Apart from being a product with low embodied energy when compared to other types of plasters, their application on the interior surface of walls may give a strong contribution for the health and comfort of inhabitants. As part of an ongoing research regarding earth-based plasters this work assesses the influence of the addition of two types of natural fibres – oat straw and typha fiber-wool – on the characteristics of plastering mortars made with a clayish earth. Mechanical and physical characteristics were tested, showing that addition of these fibers contribute to decrease linear drying shrinkage and thermal conductivity, as well as promoting the adhesion strength of plaster to the substrate. The improvement of mechanical resistance reveal to be dependent on the type of fiber added while the hygroscopic capacity of the plaster is maintained regardless of the fiber additions.
Resumo:
The ideal agent for producing pleurodesis has not been identified. Talc, the most commonly used, poses several problems. Another possibility is silver nitrate, which was widely used in the past. PURPOSE: To determine the influence of the intrapleural instillation of lidocaine in producing a pleurodesis with silver nitrate, to define the effect of lidocaine in the maturation of the collagen fibers, and to confirm that the pleurodesis after silver nitrate is stronger than after talc. METHODS: We studied three groups of 8 rabbits. Two groups received 0.5% silver nitrate; in one we had previously injected 0.5 ml of 2% lidocaine. The third group received 400 mg/kg talc (2 ml). The animals were sacrificed 28 days after the injection, and the pleural spaces were assessed grossly for evidence of pleurodesis and microscopically for evidence of inflammation and fibrosis. The total amount of pleural collagen and the distribution of thick and thin collagen fibers were quantified. Collagen was identified using picrosirius red stain. RESULTS: In the two groups that received silver nitrate (without lidocaine: 3.5 + 03 and with lidocaine: 3.2 + 0.3), the macroscopic pleurodesis (scale 0 -- 4) was significantly (p = 0.001) better than that resulting from talc (1.6 + 0.2). The mean degree of pleural fibrosis induced by silver nitrate (3.5 + 0.2) was significantly (p = 0.004) higher than that induced by talc (1.9 + 0.1). The previous instillation of lidocaine resulted in a tendency for decreased amounts of fibrosis (3.1 + 0.4). The mean amount (10³mm²) of pleural collagen was significantly (p = 0.009) greater in the rabbits that received silver nitrate (116.9 + 22.7) than in those that received talc (10.7 + 3.4). The injection of lidocaine slightly reduced the collagen (80.1 + 30.3). The distribution of collagen fibers did not differ among the groups. CONCLUSION: This rabbit model clearly confirms that intrapleural silver nitrate is more effective than talc for producing pleurodesis. The previous intrapleural instillation of lidocaine results in a decreasing trend in the amount of collagen, but does not change the effectiveness of the pleural fusion or modify the process of collagen maturation.
Resumo:
Materials engineering focuses on the assembly of materials´ properties to design new products with the best performance. By using sub-micrometer size materials in the production of composites, it is possible to obtain objects with properties that none of their compounds show individually. Once three-dimensional materials can be easily customized to obtain desired properties, much interest has been paid to nanostructured poly-mers in order to build biocompatible devices. Over the past years, the thermosensitive microgels have become more common in the framework of bio-materials with potential applicability in therapy and/or diagnostics. In addition, high aspect ratio biopolymers fibers have been produced using the cost-effective method called electrospinning. Taking advantage of both microgels and electrospun fibers, surfaces with enhanced functionalities can be obtained and, therefore employed in a wide range of applications. This dissertation reports on the confinement of stimuli-responsive microgels through the colloidal electro-spinning process. The process mainly depends on the composition, properties and patterning of the precur-sor materials within the polymer jet. Microgels as well as the electrospun non-woven mats were investigated to correlate the starting materials with the final morphology of the composite fibers. PNIPAAm and PNIPAAm/Chitosan thermosensitive microgels with different compositions were obtained via surfactant free emulsion polymerization (SFEP) and characterized in terms of chemical structure, morphology, thermal sta-bility, swelling properties and thermosensitivity. Finally, the colloidal electrospinning method was carried out from spinning solutions composed of the stable microgel dispersions (up to a concentration of about 35 wt. % microgels) and a polymer solution of PEO/water/ethanol mixture acting as fiber template solution. The confinement of microgels was confirmed by Scanning Electron Microscopy (SEM). The electrospinning process was statistically analysed providing the optimum set of parameters aimed to minimize the fiber diameter, which give rise to electrospun nanofibers of PNIPAAm microgels/PEO with a mean fiber diameter of 63 ± 25 nm.
Resumo:
Clayish earth-based mortars can be considered eco-efficient products for indoor plastering since they can contribute to improve important aspects of building performance and sustainability. Apart from being products with low embodied energy when compared to other types of mortars used for interior plastering, mainly due to the use raw clay as natural binder, earth-based plasters may give a significant contribution for health and comfort of inhabitants. Due to high hygroscopicity of clay minerals, earth-based mortars present a high adsorption and desorption capacity, particularly when compared to other type of mortars for interior plastering. This capacity allows earth-based plasters to act as a moisture buffer, balancing the relative humidity of the indoor environment and, simultaneously, acting as a passive removal material, improving air quality. Therefore, earth-based plasters may also passively promote the energy efficiency of buildings, since they may contribute to decreasing the needs of mechanical ventilation and air conditioning. This study is part of an ongoing research regarding earth-based plasters and focuses on mortars specifically formulated with soils extracted from Portuguese ‘Barrocal’ region, in Algarve sedimentary basin. This region presents high potential for interior plastering due to regional geomorphology, that promote the occurrence of illitic soils characterized by a high adsorption capacity and low expansibility. More specifically, this study aims to assess how clayish earth and sand ratio of mortars formulation can influence the physical and mechanical properties of plasters. For this assessment four mortars were formulated with different volumetric proportions of clayish earth and siliceous sand. The results from the physical and mechanical characterization confirmed the significantly low linear shrinkage of all the four mortars, as well as their extraordinary adsorption-desorption capacity. These results presented a positive correlation with mortars´ clayish earth content and are consistent with the mineralogical analysis, that confirmed illite as the prevalent clay mineral in the clayish earth used for this study. Regarding mechanical resistance, although the promising results of the adhesion test, the flexural and compressive strength results suggest that the mechanical resistance of these mortars should be slightly improved. Considering the present results the mortars mechanical resistance improvement may be achieved through the formulation of mortars with higher clayish earth content, or alternatively, through the addition of natural fibers to mortars formulation, very common in this type of mortars. Both those options will be investigated in future research.
Resumo:
PURPOSE: Our previous studies demonstrated structural and quantitative age-related changes of the elastic fibers in transversalis fascia, which may play a role in inguinal hernia formation. To verify whether there were differences in the extracellular matrix between direct and indirect inguinal hernia, we studied the amount of collagen and elastic fibers in the transversalis fascia of 36 male patients with indirect inguinal hernia and 21 with direct inguinal hernia. MATERIAL AND METHODS: Transversalis fascia fragments were obtained during surgical intervention and underwent histological quantitative analysis of collagen by colorimetry and analysis of elastic fibers by histomorphometry. RESULTS: We demonstrated significantly lower amounts of collagen and higher amounts of elastic fibers in transversalis fascia from patients with direct inguinal hernia compared to indirect inguinal hernia patients. The transversalis fascia from direct inguinal hernia patients showed structural changes of the mature and elaunin elastic fibers, which are responsible for elasticity, and lower density of oxytalan elastic fibers, which are responsible for resistance. These changes promoted loss of resiliency of the transversalis fascia. CONCLUSION: These results improve our understanding of the participation of the extracellular matrix in the genesis of direct inguinal hernia, suggesting a relationship with genetic defects of the elastic fiber and collagen synthesis.
Resumo:
Dispersion of returns has gained a lot of attention as a measure to distinguish good and bad investment opportunities time. In the following dissertation, the cross-sectional returns volatility is analyzed over a fifteen year period across the S&P100 Index composition. The main inference drawn from the data sample is that the canonical measure of dispersion is highly macro-risk driven and therefore more biased towards returns volatility rather than its correlation component.
Resumo:
Musculoskeletal diseases are one of the leading causes of disability worldwide. Tendon injuries are responsible for substantial morbidity, pain and disability. Tissue engineering strategies aim at translating tendon structure into biomimetic materials. The main goal of the present study is to develop microengineered hydrogel fibers through the combination of microfabrication and chemical interactions between oppositely charged polyelectrolytes. For this, methacrylated hyaluronic acid (MeHA) and chondroitin sulfate (MeCS) were combined with chitosan (CHT). Hydrogel fibers were obtained by injecting polymer solutions (either MeHA or MeHA/MeCS and CHT) in separate microchannels that join at a y-junction, with the materials interacting upon contact at the interface. To evaluate cell behavior, human tendon derived cells (hTDCs) were isolated from tendon surplus samples during orthopedic surgeries and seeded on top of the fibers. hTDCs adhered to the surface of the fibers, remaining viable, and were found to be expressing CD44, the receptor for hyaluronic acid. The synthesis of hydrogel fibers crosslinkable through both physical and chemical mechanisms combined with microfabrication technology allows the development of biomimetic structures with parallel fibers being formed towards the replication of tendon tissue architecture.
Resumo:
Innovative composite materials made of continuous fibers embedded in mortar matrices have been recently received attention for externally bonded reinforcement of masonry structures. In this regards, application of natural fibers for strengthening of the repair mortars is attractive due to their low specific weight, sustainability and recycability. This paper presents experimental characterization of tensile and pull-out behavior of natural fibers embedded in two different mortar-based matrices. A lime-based and a geopolymeric-based mortar are used as sustainable and innovative matrices. The obtained experimental results and observations are presented and discussed.
Resumo:
A one-step melt-mixing method is proposed to study dispersion and re-agglomeration phenomena of the as-received and functionalized graphite nanoplates in polypropylene melts. Graphite nanoplates were chemically modified via 1,3-dipolar cycloaddition of an azomethine ylide and then grafted with polypropylene-graft-maleic anhydride. The effect of surface functionalization on the dispersion kinetics, nanoparticle re-agglomeration and interface bonding with the polymer is investigated. Nanocomposites with 2 or 10 wt% of as-received and functionalized graphite nanoplates were prepared in a small-scale prototype mixer coupled to a capillary rheometer. Samples were collected along the flow axis and characterized by optical microscopy, scanning electron microscopy and electrical conductivity measurements. The as-received graphite nanoplates tend to re-agglomerate upon stress relaxation of the polymer melt. The covalent attachment of a polymer to the nanoparticle surface enhances the stability of dispersion, delaying the re-agglomeration. Surface modification also improves interfacial interactions and the resulting composites presented improved electrical conductivity.
Resumo:
The kinetics of GnP dispersion in polypropylene melt was studied using a prototype small scale modular extensional mixer. Its modular nature enabled the sequential application of a mixing step, melt relaxation, and a second mixing step. The latter could reproduce the flow conditions on the first mixing step, or generate milder flow conditions. The effect of these sequences of flow constraints upon GnP dispersion along the mixer length was studied for composites with 2 and 10 wt.% GnP. The samples collected along the first mixing zone showed a gradual decrease of number and size of GnP agglomerates, at a rate that was independent of the flow conditions imposed to the melt, but dependent on composition. The relaxation zone induced GnP re-agglomeration, and the application of a second mixing step caused variable dispersion results that were largely dependent on the hydrodynamic stresses generated.