931 resultados para device failure analysis


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis develops and validates the framework of a specialized maintenance decision support system for a discrete part manufacturing facility. Its construction utilizes a modular approach based on the fundamental philosophy of Reliability Centered Maintenance (RCM). The proposed architecture uniquely integrates System Decomposition, System Evaluation, Failure Analysis, Logic Tree Analysis, and Maintenance Planning modules. It presents an ideal solution to the unique maintenance inadequacies of modern discrete part manufacturing systems. Well established techniques are incorporated as building blocks of the system's modules. These include Failure Mode Effect and Criticality Analysis (FMECA), Logic Tree Analysis (LTA), Theory of Constraints (TOC), and an Expert System (ES). A Maintenance Information System (MIS) performs the system's support functions. Validation was performed by field testing of the system at a Miami based manufacturing facility. Such a maintenance support system potentially reduces downtime losses and contributes to higher product quality output. Ultimately improved profitability is the final outcome. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With the heavy use of bearings in various segments of the industry, there are a large number of necessary interruptions in industrial processes to perform maintenance on these devices, with the case study wind turbines. The growth of the wind energy sector, encouraged to conduct research that helps to solve this problem. To contribute to predictive maintenance has been carried out a signal analysis using techniques which allow detection and location of the problem in order to prevent accidents caused and losses due to unexpected equipment failures, whereas low system rotation complicates the detection of the failure. To work around this problem, there was the indication of standard signals for defects in the bearings, making diagnosis of possible failures. With this diagnosis can be performed predictive maintenance, identifying the failure of the system that were tested, such as the introduction of grains of sand in the bearing, wear on the outer race of the bearing and bearing rust. By processing signals it is possible to construct graphs developing a mapping of defects by different peaks in the frequency band.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Silicon-based discrete high-power devices need to be designed with optimal performance up to several thousand volts and amperes to reach power ratings ranging from few kWs to beyond the 1 GW mark. To this purpose, a key element is the improvement of the junction termination (JT) since it allows to drastically reduce surface electric field peaks which may lead to an earlier device failure. This thesis will be mostly focused on the negative bevel termination which from several years constitutes a standard processing step in bipolar production lines. A simple methodology to realize its counterpart, a planar JT with variation of the lateral doping concentration (VLD) will be also described. On the JT a thin layer of a semi insulating material is usually deposited, which acts as passivation layer reducing the interface defects and contributing to increase the device reliability. A thorough understanding of how the passivation layer properties affect the breakdown voltage and the leakage current of a fast-recovery diode is fundamental to preserve the ideal termination effect and provide a stable blocking capability. More recently, amorphous carbon, also called diamond-like carbon (DLC), has been used as a robust surface passivation material. By using a commercial TCAD tool, a detailed physical explanation of DLC electrostatic and transport properties has been provided. The proposed approach is able to predict the breakdown voltage and the leakage current of a negative beveled power diode passivated with DLC as confirmed by the successfully validation against the available experiments. In addition, the VLD JT proposed to overcome the limitation of the negative bevel architecture has been simulated showing a breakdown voltage very close to the ideal one with a much smaller area consumption. Finally, the effect of a low junction depth on the formation of current filaments has been analyzed by performing reverse-recovery simulations.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Background: The RCP is a 14 French collapsable percutaneous cardiovascular support device positioned in the descending part of the thoracic aorta via the femoral artery. A 10 patient first in man study demonstrated device safety and significant improvement in renal function among high risk PCI patients. We now report haemodynamic and renal efficacy in patients with ADHF.Methods: Prospective non randomised study seeking to recruit 20 patients with ADHF with a need for inotropic or mechanical circulatory support with: i) EF < 30% ii)Cardiac index(CI) < 2.2 L / min / m2 Outcome measures included: 1) Cardiac index (CI) 2) Pulmonary Capillary Wedge Pressure (PCWP) 3) Urine output / serum creatinine 4) Vascular / device complications 5) 30 day mortalityResults: INTERIM ANALYSIS (n=12) The mean age of the study group was 64 years, with a mean baseline creatinine of 193 umol/L, eGFR 38 ml/min. The intended RCP treatment period was 24 hours. During RCP treatment there was a significant mean reduction of PCWP at 4 hours of 17% (25 to 21 mmHg p=0.04). Mean CI increased at 12 hours by 11%, though not reaching significance (1.78 to 1.96 L/min/m2 p=0.08). RCP insertion prompted substantial diuresis. Urine output tripled over the first 12 hours compared to baseline (55 ml/hr vs 213 ml/hr p=0.03). This was associated with significantly improved renal function, a 28% reduction in serum creatinine at 12 hours (193 to 151 umol/L p=0.003), and a increase in eGFR from 38 ml/min to 50 ml/min (p=0.0007). 2 patients previously refused cardiac transplantation were reassessed and successfully transplanted within 9 months of RCP treatment on the basis of demonstrable renal reversibility. There were no vascular or device complications. There were 2 deaths at 30 days, one from multi-organ failure and sepsis, and one from intractable heart failure - neither were device related.Conclusion: RCP support in ADHF patients was associated with improved haemodynamics, and an improvement in renal function. The Reitan Catheter Pump may have a role in providing percutaneous cardiovascular and renal support in the acutely decompensated cardiac patient, and may have a role in suggesting renal reversibility in potential cardiac transplant patients. Further data will be reported at recruitment completion.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Background: Several models have been designed to predict survival of patients with heart failure. These, while available and widely used for both stratifying and deciding upon different treatment options on the individual level, have several limitations. Specifically, some clinical variables that may influence prognosis may have an influence that change over time. Statistical models that include such characteristic may help in evaluating prognosis. The aim of the present study was to analyze and quantify the impact of modeling heart failure survival allowing for covariates with time-varying effects known to be independent predictors of overall mortality in this clinical setting. Methodology: Survival data from an inception cohort of five hundred patients diagnosed with heart failure functional class III and IV between 2002 and 2004 and followed-up to 2006 were analyzed by using the proportional hazards Cox model and variations of the Cox's model and also of the Aalen's additive model. Principal Findings: One-hundred and eighty eight (188) patients died during follow-up. For patients under study, age, serum sodium, hemoglobin, serum creatinine, and left ventricular ejection fraction were significantly associated with mortality. Evidence of time-varying effect was suggested for the last three. Both high hemoglobin and high LV ejection fraction were associated with a reduced risk of dying with a stronger initial effect. High creatinine, associated with an increased risk of dying, also presented an initial stronger effect. The impact of age and sodium were constant over time. Conclusions: The current study points to the importance of evaluating covariates with time-varying effects in heart failure models. The analysis performed suggests that variations of Cox and Aalen models constitute a valuable tool for identifying these variables. The implementation of covariates with time-varying effects into heart failure prognostication models may reduce bias and increase the specificity of such models.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Vertebral compression fracture is a common medical problem in osteoporotic individuals. The quantitative computed tomography (QCT)-based finite element (FE) method may be used to predict vertebral strength in vivo, but needs to be validated with experimental tests. The aim of this study was to validate a nonlinear anatomy specific QCT-based FE model by using a novel testing setup. Thirty-seven human thoracolumbar vertebral bone slices were prepared by removing cortical endplates and posterior elements. The slices were scanned with QCT and the volumetric bone mineral density (vBMD) was computed with the standard clinical approach. A novel experimental setup was designed to induce a realistic failure in the vertebral slices in vitro. Rotation of the loading plate was allowed by means of a ball joint. To minimize device compliance, the specimen deformation was measured directly on the loading plate with three sensors. A nonlinear FE model was generated from the calibrated QCT images and computed vertebral stiffness and strength were compared to those measured during the experiments. In agreement with clinical observations, most of the vertebrae underwent an anterior wedge-shape fracture. As expected, the FE method predicted both stiffness and strength better than vBMD (R2 improved from 0.27 to 0.49 and from 0.34 to 0.79, respectively). Despite the lack of fitting parameters, the linear regression of the FE prediction for strength was close to the 1:1 relation (slope and intercept close to one (0.86 kN) and to zero (0.72 kN), respectively). In conclusion, a nonlinear FE model was successfully validated through a novel experimental technique for generating wedge-shape fractures in human thoracolumbar vertebrae.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Numerous types of acute respiratory failure are routinely treated using non-invasive ventilatory support (NIV). Its efficacy is well documented: NIV lowers intubation and death rates in various respiratory disorders. It can be delivered by means of face masks or head helmets. Currently the scientific community’s interest about NIV helmets is mostly focused on optimising the mixing between CO2 and clean air and on improving patient comfort. To this end, fluid dynamic analysis plays a particularly important role and a two- pronged approach is frequently employed. While on one hand numerical simulations provide information about the entire flow field and different geometries, they exhibit require huge temporal and computational resources. Experiments on the other hand help to validate simulations and provide results with a much smaller time investment and thus remain at the core of research in fluid dynamics. The aim of this thesis work was to develop a flow bench and to utilise it for the analysis of NIV helmets. A flow test bench and an instrumented mannequin were successfully designed, produced and put into use. Experiments were performed to characterise the helmet interface in terms of pressure drop and flow rate drop over different inlet flow rates and outlet pressure set points. Velocity measurements by means of Particle Image Velocimetry were performed. Pressure drop and flow rate characteristics from experiments were contrasted with CFD data and sufficient agreement was observed between both numerical and experimental results. PIV studies permitted qualitative and quantitative comparisons with numerical simulation data and offered a clear picture of the internal flow behaviour, aiding the identification of coherent flow features.