967 resultados para detection efficiency
Resumo:
With over 50 billion downloads and more than 1.3 million apps in Google’s official market, Android has continued to gain popularity amongst smartphone users worldwide. At the same time there has been a rise in malware targeting the platform, with more recent strains employing highly sophisticated detection avoidance techniques. As traditional signature based methods become less potent in detecting unknown malware, alternatives are needed for timely zero-day discovery. Thus this paper proposes an approach that utilizes ensemble learning for Android malware detection. It combines advantages of static analysis with the efficiency and performance of ensemble machine learning to improve Android malware detection accuracy. The machine learning models are built using a large repository of malware samples and benign apps from a leading antivirus vendor. Experimental results and analysis presented shows that the proposed method which uses a large feature space to leverage the power of ensemble learning is capable of 97.3 % to 99% detection accuracy with very low false positive rates.
Resumo:
During the past decade, many molecular components of clathrin-mediated endocytosis have been identified and proposed to play various hypothetical roles in the process [Nat. Rev. Neurosci. 1 (2000) 161; Nature 422 (2003) 37]. One limitation to the evaluation of these hypotheses is the efficiency and resolution of immunolocalization protocols currently in use. In order to facilitate the evaluation of these hypotheses and to understand more fully the molecular mechanisms of clathrin-mediated endocytosis, we have developed a protocol allowing enhanced and reliable subcellular immunolocalization of proteins in synaptic endocytic zones in situ. Synapses established by giant reticulospinal axons in lamprey are used as a model system for these experiments. These axons are unbranched and reach up to 80-100 microm in diameter. Synaptic active zones and surrounding endocytic zones are established on the surface of the axonal cylinder. To provide access for antibodies to the sites of synaptic vesicle recycling, axons are lightly fixed and cut along their longitudinal axis. To preserve the ultrastructure of the synaptic endocytic zone, antibodies are applied without the addition of detergents. Opened axons are incubated with primary antibodies, which are detected with secondary antibodies conjugated to gold particles. Specimens are then post-fixed and processed for electron microscopy. This approach allows preservation of the ultrastructure of the endocytic sites during immunolabeling procedures, while simultaneously achieving reliable immunogold detection of proteins on endocytic intermediates. To explore the utility of this approach, we have investigated the localization of a GTPase, dynamin, on clathrin-coated intermediates in the endocytic zone of the lamprey giant synapse. Using the present immunogold protocol, we confirm the presence of dynamin on late stage coated pits [Nature 422 (2003) 37] and also demonstrate that dynamin is recruited to the coat of endocytic intermediates from the very early stages of the clathrin coat formation. Thus, our experiments show that the current pre-embedding immunogold method is a useful experimental tool to study the molecular mechanisms of synaptic vesicle recycling.
Resumo:
One of the most important factors that affects the performance of energy detection (ED) is the fading channel between the wireless nodes. This article investigates the performance of ED-based spectrum sensing, for cognitive radio (CR), over two-wave with diffuse power (TWDP) fading channels. The TWDP fading model characterizes a variety of fading channels, including well-known canonical fading distributions, such as Rayleigh and Rician, as well as worse than Rayleigh fading conditions modeled by the two-ray fading model. Novel analytic expressions for the average probability of detection over TWDP fading that account for single-user and cooperative spectrum sensing as well as square law selection diversity reception are derived. These expressions are used to analyze the behavior of ED-based spectrum sensing over moderate, severe and extreme fading conditions, and to investigate the use of cooperation and diversity as a means of mitigating the fading effects. Our results indicate that TWDP fading conditions can significantly degrade the sensing performance; however, it is shown that detection performance can be improved when cooperation and diversity are employed. The presented outcomes enable us to identify the limits of ED-based spectrum sensing and quantify the trade-offs between detection performance and energy efficiency for cognitive radio systems deployed within confined environments such as in-vehicular wireless networks.
Resumo:
Significant improvements in human health have been achieved through the increased consumption of pharmaceutical drugs. However, most of these active pharmaceutical ingredients (APIs) are excreted by mammals (in a metabolized or unchanged form) into the environment. The presence of residual amounts of these contaminants was already confirmed in aqueous streams since treatment processes either wastewater treatment plants (WWTPs) or sewage treatment plants (STPs) are not specifically designed for this type of pollutants. Although they are present in aqueous effluents, they are usually at very low concentrations, most of the times below the detection limits of analytical equipment used for their quantification, hindering their accurate monitoring. Therefore, the development of a pre-concentration technique in order to accurately quantify and monitor these components in aqueous streams is of major relevance. This work addresses the use of liquid-liquid equilibria, applying ionic liquids (ILs), for the extraction and concentration of non-steroidal anti-inflammatory drugs (NSAIDs) from aqueous effluents. Particularly, aqueous biphasic systems (ABSs) composed of ILs and potassium citrate were investigated in the extraction and concentration of naproxen, diclofenac and ketoprofen from aqueous media. Both the extraction efficiency and concentration factor achievable by these systems was determined and evaluated. Within the best conditions, extraction efficiencies of 99.4% and concentration factors up to 13 times were obtained.
Resumo:
A DS-CDMA (Direct Sequence-Coded Division Multiple Access) system has maximum spectral efficiency if the system is fully loaded (i.e., the number of users is equal to the spreading factor) and we employ signals with bandwidth equal to the chip rate. However, due to implementation constraints we need to employ signals with higher bandwidth, decreasing the system’s spectral efficiency. In this paper we consider prefixassisted DS-CDMA systems with bandwidth that can be significantly above the chip rate. To allow high spectral efficiency we consider highly overloaded systems where the number of users can be twice the spreading factor or even more. To cope with the strong interference levels we present an iterative frequencydomain receiver that takes full advantage of the total bandwidth of the transmitted signals. Our performance results show that the proposed receiver can have excellent performance, even for highly overloaded systems. Moreover, the overall system performance can be close to the maximum theoretical spectral efficiency, even with transmitted signals that have bandwidth significantly above the chip rate.
Resumo:
BACKGROUND: Advances in nebulizer design have produced both ultrasonic nebulizers and devices based on a vibrating mesh (vibrating mesh nebulizers), which are expected to enhance the efficiency of aerosol drug therapy. The aim of this study was to compare 4 different nebulizers, of 3 different types, in an in vitro model using albuterol delivery and physical characteristics as benchmarks. METHODS: The following nebulizers were tested: Sidestream Disposable jet nebulizer, Multisonic Infra Control ultrasonic nebulizer, and the Aerogen Pro and Aerogen Solo vibrating mesh nebulizers. Aerosol duration, temperature, and drug solution osmolality were measured during nebulization. Albuterol delivery was measured by a high-performance liquid chromatography system with fluorometric detection. The droplet size distribution was analyzed with a laser granulometer. RESULTS: The ultrasonic nebulizer was the fastest device based on the duration of nebulization; the jet nebulizer was the slowest. Solution temperature decreased during nebulization when the jet nebulizer and vibrating mesh nebulizers were used, but it increased with the ultrasonic nebulizer. Osmolality was stable during nebulization with the vibrating mesh nebulizers, but increased with the jet nebulizer and ultrasonic nebulizer, indicating solvent evaporation. Albuterol delivery was 1.6 and 2.3 times higher with the ultrasonic nebulizer and vibrating mesh nebulizers devices, respectively, than with the jet nebulizer. Particle size was significantly higher with the ultrasonic nebulizer. CONCLUSIONS: The in vitro model was effective for comparing nebulizer types, demonstrating important differences between nebulizer types. The new devices, both the ultrasonic nebulizers and vibrating mesh nebulizers, delivered more aerosolized drug than traditional jet nebulizers.
Resumo:
On average approximately 13% of the water that is withdrawn by Canadian municipal water suppliers is lost before it reaches final users. This is an important topic for several reasons: water losses cost money, losses force water agencies to draw more water from lakes and streams thereby putting more stress on aquatic ecosystems, leaks reduce system reliability, leaks may contribute to future pipe failures, and leaks may allow contaminants to enter water systems thereby reducing water quality and threatening the health of water users. Some benefits of leak detection fall outside water agencies’ accounting purview (e.g. reduced health risks to households connected to public water supply systems) and, as a result, may not be considered adequately in water agency decision-making. Because of the regulatory environment in which Canadian water agencies operate, some of these benefits-especially those external to the agency or those that may accrue to the agency in future time periods- may not be fully counted when agencies decide on leak detection efforts. Our analysis suggests potential reforms to promote increased efforts for leak detection: adoption of a Canada-wide goal of universal water metering; development of full-cost accounting and, pricing for water supplies; and co-operation amongst the provinces to promulgate standards for leak detection efforts and provide incentives to promote improved efficiency and rational investment decision-making.
Resumo:
The presence of microcalcifications in mammograms can be considered as an early indication of breast cancer. A fastfractal block coding method to model the mammograms fordetecting the presence of microcalcifications is presented in this paper. The conventional fractal image coding method takes enormous amount of time during the fractal block encoding.procedure. In the proposed method, the image is divided intoshade and non shade blocks based on the dynamic range, andonly non shade blocks are encoded using the fractal encodingtechnique. Since the number of image blocks is considerablyreduced in the matching domain search pool, a saving of97.996% of the encoding time is obtained as compared to theconventional fractal coding method, for modeling mammograms.The above developed mammograms are used for detectingmicrocalcifications and a diagnostic efficiency of 85.7% isobtained for the 28 mammograms used.
Resumo:
La presencia de microorganismos patógenos en alimentos es uno de los problemas esenciales en salud pública, y las enfermedades producidas por los mismos es una de las causas más importantes de enfermedad. Por tanto, la aplicación de controles microbiológicos dentro de los programas de aseguramiento de la calidad es una premisa para minimizar el riesgo de infección de los consumidores. Los métodos microbiológicos clásicos requieren, en general, el uso de pre-enriquecimientos no-selectivos, enriquecimientos selectivos, aislamiento en medios selectivos y la confirmación posterior usando pruebas basadas en la morfología, bioquímica y serología propias de cada uno de los microorganismos objeto de estudio. Por lo tanto, estos métodos son laboriosos, requieren un largo proceso para obtener resultados definitivos y, además, no siempre pueden realizarse. Para solucionar estos inconvenientes se han desarrollado diversas metodologías alternativas para la detección identificación y cuantificación de microorganismos patógenos de origen alimentario, entre las que destacan los métodos inmunológicos y moleculares. En esta última categoría, la técnica basada en la reacción en cadena de la polimerasa (PCR) se ha convertido en la técnica diagnóstica más popular en microbiología, y recientemente, la introducción de una mejora de ésta, la PCR a tiempo real, ha producido una segunda revolución en la metodología diagnóstica molecular, como pude observarse por el número creciente de publicaciones científicas y la aparición continua de nuevos kits comerciales. La PCR a tiempo real es una técnica altamente sensible -detección de hasta una molécula- que permite la cuantificación exacta de secuencias de ADN específicas de microorganismos patógenos de origen alimentario. Además, otras ventajas que favorecen su implantación potencial en laboratorios de análisis de alimentos son su rapidez, sencillez y el formato en tubo cerrado que puede evitar contaminaciones post-PCR y favorece la automatización y un alto rendimiento. En este trabajo se han desarrollado técnicas moleculares (PCR y NASBA) sensibles y fiables para la detección, identificación y cuantificación de bacterias patogénicas de origen alimentario (Listeria spp., Mycobacterium avium subsp. paratuberculosis y Salmonella spp.). En concreto, se han diseñado y optimizado métodos basados en la técnica de PCR a tiempo real para cada uno de estos agentes: L. monocytogenes, L. innocua, Listeria spp. M. avium subsp. paratuberculosis, y también se ha optimizado y evaluado en diferentes centros un método previamente desarrollado para Salmonella spp. Además, se ha diseñado y optimizado un método basado en la técnica NASBA para la detección específica de M. avium subsp. paratuberculosis. También se evaluó la aplicación potencial de la técnica NASBA para la detección específica de formas viables de este microorganismo. Todos los métodos presentaron una especificidad del 100 % con una sensibilidad adecuada para su aplicación potencial a muestras reales de alimentos. Además, se han desarrollado y evaluado procedimientos de preparación de las muestras en productos cárnicos, productos pesqueros, leche y agua. De esta manera se han desarrollado métodos basados en la PCR a tiempo real totalmente específicos y altamente sensibles para la determinación cuantitativa de L. monocytogenes en productos cárnicos y en salmón y productos derivados como el salmón ahumado y de M. avium subsp. paratuberculosis en muestras de agua y leche. Además este último método ha sido también aplicado para evaluar la presencia de este microorganismo en el intestino de pacientes con la enfermedad de Crohn's, a partir de biopsias obtenidas de colonoscopia de voluntarios afectados. En conclusión, este estudio presenta ensayos moleculares selectivos y sensibles para la detección de patógenos en alimentos (Listeria spp., Mycobacterium avium subsp. paratuberculosis) y para una rápida e inambigua identificación de Salmonella spp. La exactitud relativa de los ensayos ha sido excelente, si se comparan con los métodos microbiológicos de referencia y pueden serusados para la cuantificación de tanto ADN genómico como de suspensiones celulares. Por otro lado, la combinación con tratamientos de preamplificación ha resultado ser de gran eficiencia para el análisis de las bacterias objeto de estudio. Por tanto, pueden constituir una estrategia útil para la detección rápida y sensible de patógenos en alimentos y deberían ser una herramienta adicional al rango de herramientas diagnósticas disponibles para el estudio de patógenos de origen alimentario.
Resumo:
This paper reports the current state of work to simplify our previous model-based methods for visual tracking of vehicles for use in a real-time system intended to provide continuous monitoring and classification of traffic from a fixed camera on a busy multi-lane motorway. The main constraints of the system design were: (i) all low level processing to be carried out by low-cost auxiliary hardware, (ii) all 3-D reasoning to be carried out automatically off-line, at set-up time. The system developed uses three main stages: (i) pose and model hypothesis using 1-D templates, (ii) hypothesis tracking, and (iii) hypothesis verification, using 2-D templates. Stages (i) & (iii) have radically different computing performance and computational costs, and need to be carefully balanced for efficiency. Together, they provide an effective way to locate, track and classify vehicles.
Resumo:
Perfluorodecalin (C10F18) has a range of medical uses that have led to small releases. Recently, it has been proposed as a carrier of vaccines, which could lead to significantly larger emissions. Since its emissions are controlled under the Kyoto Protocol, it is important that values for the global warming potential (GWP) are available. For a 50:50 mixture of the two isomers of perfluorodecalin, laboratory measurements, supplemented by theoretical calculations, give an integrated absorption cross-section of 3.91 x 10(-16) cm(2) molecule(-1) cm(-1) over the spectral region 0-1500 cm(-1); calculations yield a radiative efficiency of 0.56 W m(-2) ppbv(-1) and a 100-year GWP, relative to carbon dioxide, of 7200 assuming a lifetime of 1000 years. We report the first atmospheric measurements of perfluorodecalin, at Bristol, UK and Mace Head, Ireland, where volume mixing ratios are about 1.5 x 10(-15). At these concentrations, it makes a trivial contribution to climate change, but on a per molecule basis it is a potent greenhouse gas, indicating the need for careful assessment of its possible future usage. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Flow in geophysical fluids is commonly summarized by coherent streams, for example conveyor belt flows in extratropical cyclones or jet streaks in the upper troposphere. Typically, parcel trajectories are calculated from the flow field and subjective thresholds are used to distinguish coherent streams of interest. This methodology contribution develops a more objective approach to distinguish coherent airstreams within extratropical cyclones. Agglomerative clustering is applied to trajectories along with a method to identify the optimal number of cluster classes. The methodology is applied to trajectories associated with the low-level jets of a well-studied extratropical cyclone. For computational efficiency, a constraint that trajectories must pass through these jet regions is applied prior to clustering; the partitioning into different airstreams is then performed by the agglomerative clustering. It is demonstrated that the methodology can identify the salient flow structures of cyclones: the warm and cold conveyor belts. A test focusing on the airstreams terminating at the tip of the bent-back front further demonstrates the success of the method in that it can distinguish fine-scale flow structure such as descending sting jet airstreams.
Resumo:
A method for the determination of volatile organic compounds (VOCs) in recycled polyethylene terephthalate and high-density polyethylene using headspace sampling by solid-phase microextraction and gas chromatography coupled to mass spectrometry detection is presented. This method was used to evaluate the efficiency of cleaning processes for VOC removal from recycled PET. In addition, the method was also employed to evaluate the level of VOC contamination in multilayer packaging material containing recycled HDPE material. The optimisation of the extraction procedure for volatile compounds was performed and the best extraction conditions were found using a 75 mu m carboxen-polydimethylsiloxane (CAR-PDMS) fibre for 20 min at 60 degrees C. The validation parameters for the established method were linear range, linearity, sensitivity, precision (repeatability), accuracy (recovery) and detection and quantification limits. The results indicated that the method could easily be used in quality control for the production of recycled PET and HDPE. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Identification of all important community members as well as of the numerically dominant members of a community are key aspects of microbial community analysis of bioreactor samples. A systematic study was conducted with artificial consortia to test whether denaturing gradient gel electrophoresis (DGCE) is a reliable technique to obtain such community data under conditions where results would not be affected by differences in DNA extraction efficiency from cells. A total of 27 consortia were established by mixing DNA extracted from Escherichia coli K12, Burkholderia cepacia and Stenotrophomonas maltophilia in different proportions. Concentrations of DNA of single organisms in the consortia were either 0.04, 0.4 or 4 ng/mu l. DGGE-PCR of genomic DNA with primer sets targeted at the V3 and V6-V8 regions of the 16S rDNA failed to detect the three community members in only 7% of consortia, but provided incorrect information about dominance or co-dominance for 85% and 89% of consortia with the primer sets for the V6-V8 and V3 regions, respectively. The high failure rate in detection of dominant B. cepacia with the primers for the V6-V8 region was attributable to a single nucleoticle primer mismatch in the target sequences of both, the forward and reverse primer. Amplification bias in PCR of E. coli and S. maltophilia for the V6-V8 region and for all three organisms for the V3 region occurred due to interference of genomic DNA in PCR-DGGE, since a nested PCR approach, where PCR-DGGE was started from mixtures of 16S rRNA genes of the organisms, provided correct information about the relative abundance of original DNA in the sample. Multiple bands were not observed in pure culture amplicons produced with the V6-V8 primer pair, but pure culture V3 DGGE profiles of E. coli, S. maltophilia and B. cepacia contained 5, 3 and 3 bands, respectively. These results demonstrate DGGE was suitable for identification of all important community members in the three-membered artificial consortium, but not for identification of the dominant organisms in this small community. Multiple DGGE bands obtained for single organisms with the V3 primer pair could greatly confound interpretation of DGGE profiles. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Capillary electrophoresis with capacitively coupled contactless conductivity detection was successfully used to quantify N-acetylglucosamine and five N-acetyl-chitooligosaccharides (C2-C6) produced after reaction with a purified chitinase (TmChi) from Tenebrio molitor (Coleoptera). No derivatization process was necessary. The separation was developed using 10 mM NaOH with 10% (v/v) acetonitrile as background electrolyte and homemade equipment with a system that avoids the harmful effect of electrolysis. The limit of detection for all oligosaccharides was ca. 3 mu M, and the results indicated that the larger the oligosaccharide, the higher the sensitivity. Analysis of the chitooligosaccharides produced revealed that TmChi has an endolytic cleavage pattern with C5 as the best substrate (higher catalytic efficiency k(cat)/K-M) releasing C2 and C3. (c) 2007 Elsevier Inc. All rights reserved.