985 resultados para dentin microhardness
Resumo:
The aim of this study was the evaluation of the effectiveness of photodynamic therapy on the decontamination of artificially induced carious bovine dentin, using Photoge(R) as the photosensitizer agent and an LED device as a light source. Dentin samples obtained from bovine incisors were immersed in sterile broth supplemented by Lactobacillus acidophillus 10(8) colony formation units (CFU) and Streptococcus mutans 10 8 CFU. Different concentrations of photosensitizer, PA = 1 mg/ml, PB = 2 mg/ml, and PC = 3 mg/ml, and two fluences, D = 24 J/cm(2) and D = 48 J/cm(2), were investigated. After CFU counting per milligram of carious dentin and statistical analysis, we observed that the photodynamic therapy (PDT) parameters used were effective for bacterial reduction in the in vitro model under study. The best result was achieved with the application of Photoge(R) at 2 mg/ml and photoactivated under 24 J/cm(2) showing a survival factor of 0.14. At higher photosensitizer concentrations, a higher dark toxicity was observed. We propose a simple mathematical expression for the determination of PDT parameters of photosensitizer concentration and light fluence for different survival factor values. Since LED devices are simpler and cheaper compared to laser systems, it would be interesting to verify their efficacy as a light source in photodynamic therapy for the decontamination of carious dentin.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The purpose of this study was to evaluate stress distribution in the hybrid layer produced by two adhesive systems using three-dimensional finite element analysis (FEA). Four FEA models (M) were developed: Mc, a representation of a dentin specimen (41 x 41 x 82 mu m) restored with composite resin, exhibiting the adhesive layer, hybrid layer (HL), resin tags, peritubular dentin, and intertubular dentin to simulate the etch-and-rinse adhesive system; Mr, similar to Mc, with lateral branches of the adhesive; Ma, similar to Mc, however without resin tags and obliterated tubule orifice, to simulate the environment for the self-etching adhesive system; Mat, similar to Ma, with tags. A numerical simulation was performed to obtain the maximum principal stress (sigma(max)). The highest sigma(max) in the HL was observed for the etch-and-rinse adhesive system. The lateral branches increased the sigma(max) in the HL. The resin tags had a little influence on stress distribution with the self-etching system. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objectives: To characterize the interaction of 1-Ethyl-3-[3-dimethylaminopropyl] carbodiimide Hydrochloride (EDC) with dentin matrix and its effect on the resin-dentin bond. Methods: Changes to the stiffness of demineralized dentin fragments treated with EDC/N-hydroxysuccinimide (NHS) in different solutions were evaluated at different time points. The resistance against enzymatic degradation was indirectly evaluated by ultimate tensile strength (UTS) test of demineralized dentin treated or not with EDC/NHS and subjected to collagenase digestion. Short- and long-term evaluations of the strength of resin-dentin interfaces treated with EDC/NHS for 1 h were performed using microtensile bond strength (mu TBS) test. All data (MPa) were individually analyzed using ANOVA and Tukey HSD tests (alpha = 0.05). Results: The different exposure times significantly increased the stiffness of dentin (p < 0.0001, control-5.15 and EDC/NHS-29.50), while no differences were observed among the different solutions of EDC/NHS (p = 0.063). Collagenase challenge did not affect the UTS values of EDC/NHS group (6.08) (p > 0.05), while complete degradation was observed for the control group (p = 0.0008, control-20.84 and EDC/NHS-43.15). EDC/NHS treatment did not significantly increase resin-dentin mu TBS, but the values remained stable after 12 months water storage (p < 0.05). Conclusions: Biomimetic use of EDC/NHS to induce exogenous collagen cross-links resulted in increased mechanical properties and stability of dentin matrix and dentin-resin interfaces. (C) 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 94B: 250-255, 2010.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: The aim of this study was to evaluate the effect of mechanical cycling and different misfit levels on Vicker's microhardness of retention screws for single implant-supported prostheses.Materials and Methods: Premachined UCLA abutments were cast with cobalt-chromium alloy to obtain 48 crowns divided into four groups (n = 12). The crowns presented no misfit in group A (control group) and unilateral misfits of 50 mu m, 100 mu m, and 200 mu m in groups B, C, and D, respectively. The crowns were screwed to external hexagon implants with titanium retention screws (torque of 30 N/cm), and the sets were submitted to three different periods of mechanical cycling: 2 x 10(4), 5 x 10(4), and 1 x 10(6) cycles. Screw microhardness values were measured before and after each cycling period. Data were evaluated by two-way ANOVA and Tukey's test (p < 0.05).Results: Mechanical cycling statistically reduced microhardness values of retention screws regardless of cycling periods and groups. In groups A, B, and C, initial microhardness values were statistically different from final microhardness values (p < 0.05). There was no statistically significant difference for initial screw microhardness values (p > 0.05) among the groups; however, when the groups were compared after mechanical cycling, a statistically significant difference was observed between groups B and D (p < 0.05).Conclusions: Mechanical cycling reduced the Vicker's microhardness values of the retention screws of all groups. The crowns with the highest misfit level presented the highest Vicker's microhardness values.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)