947 resultados para density-dependent model
Resumo:
Bacterial quorum sensing (QS) is a density dependent communication system that regulates the expression of certain genes including production of virulence factors in many pathogens. Bioactive plant extract/compounds inhibiting QS regulated gene expression may be a potential candidate as antipathogenic drug. In this study anti-QS activity of peppermint (Menthe piperita) oil was first tested using the Chromobacterium violaceum CVO26 biosensor. Further, the findings of the present investigation revealed that peppermint oil (PMO) at sub-Minimum Inhibitory Concentrations (sub-MICs) strongly interfered with acyl homoserine lactone (AHL) regulated virulence factors and biofilm formation in Pseudomonas aeruginosa and Aeromonas hydrophila. The result of molecular docking analysis attributed the QS inhibitory activity exhibited by PMO to menthol. Assessment of ability of menthol to interfere with QS systems of various Gram-negative pathogens comprising diverse AHL molecules revealed that it reduced the AHL dependent production of violacein, virulence factors, and biofilm formation indicating broad-spectrum anti-QS activity. Using two Escherichia colt biosensors, MG4/pKDT17 and pEAL08-2, we also confirmed that menthol inhibited both the las and pqs QS systems. Further, findings of the in vivo studies with menthol on nematode model Caenorhabditis elegans showed significantly enhanced survival of the nematode. Our data identified menthol as a novel broad spectrum QS inhibitor.
Resumo:
The spread of wildlife diseases is a major threat to livestock, human health, resource-based recreation, and biodiversity conservation (Cleaveland, Laurenson, and Taylor). The development of economically sound wildlife disease-management strategies requires an understanding of the links between ecological functions (e.g., disease transmission and wildlife dispersal) and economic choices, and the associated tradeoffs. Spatial linkages are particularly relevant. Yet while ecologists have long-argued that space is important (Hudson et al.), prior economic work has largely ignored spatial issues. For instance, Horan and Wolf analyzed a case study of bovine tuberculosis (bTB) in Michigan deer, a problem where the disease appears to be confined to a single, spatially confined, wildlife population—an island. But wildlife disease matters generally are not spatially confined. Barlow, in analyzing bTB in possums in New Zealand, accounted for immigration of susceptible possums into a disease reservoir. However, he modeled immigration as fixed and unaffected by management. Bicknell, Wilen, and Howitt, also focusing on possums in New Zealand, developed a model that incorporates simple density-dependent net migration. This allowed the authors to account for endogenous immigration when deriving optimal culling strategies.
Resumo:
Moose Alces alces gigas in Alaska, USA, exhibit extreme sexual dimorphism, with adult males possessing large, elaborate antlers. Antler size and conformation are influenced by age, nutrition and genetics, and these bony structures serve to establish social rank and affect mating success. Population density, combined with anthropogenic effects such as harvest, is thought to influence antler size. Antler size increased as densities of moose decreased, ostensibly a density-dependent response related to enhanced nutrition at low densities. The vegetation type where moose were harvested also affected antler size, with the largest-antlered males occupying more open habitats. Hunts with guides occurred in areas with low moose density, minimized hunter interference and increased rates of success. Such hunts harvested moose with larger antler spreads than did non-guided hunts. Knowledge and abilities allowed guides to satisfy demands of trophy hunters, who are an integral part of the Alaskan economy. Heavy harvest by humans was also associated with decreased antler size of moose, probably via a downward shift in the age structure of the population resulting in younger males with smaller antlers. Nevertheless, density-dependence was more influential than effects of harvest on age structure in determining antler size of male moose. Indeed, antlers are likely under strong sexual selection, but we demonstrate that resource availability influenced the distribution of these sexually selected characters across the landscape. We argue that understanding population density in relation to carrying capacity (K) and the age structure of males is necessary to interpret potential consequences of harvest on the genetics of moose and other large herbivores. Our results provide researchers and managers with a better understanding of variables that affect the physical condition, antler size, and perhaps the genetic composition of populations, which may be useful in managing and modeling moose populations.
Resumo:
Overabundance of white-tailed deer (Odocoileus virginianus) continues to challenge wildlife professionals nationwide, especially in urban settings. Moreover, wildlife managers often lack general site-specific information on deer movements, survival, and reproduction that are critical for management planning. We conducted radio-telemetry research concurrent with deer culling in forest preserves in northeastern Illinois and used empirical data to construct predictive population models. We culled 2,826 deer from 16 forest preserves in DuPage County (1992-1999) including 1,736 from the 10 km2 Waterfall Glen Forest Preserve. We also radio-marked 129 deer from 8 preserves in DuPage and adjacent Cook County (1994-1998). Recruitment was inversely associated with deer density suggesting a classic density-dependent response. Female deer were philopatric and 20% of adult males dispersed. Survival was high for all sex and age classes, and deer-vehicle collisions accounted for >55% of known mortalities. Based upon data from other areas, early attempts to apply population models to deer at Waterfall Glen Forest Preserve were not useful. The subsequent quantification of the density-dependent recruitment response and use of other empirical data strengthened the predictive capability of models. Our experience illustrates the importance of understanding demographics of overabundant deer in order to set realistic objectives and make sound management decisions.
Resumo:
Studies of consumer-resource interactions suggest that individual diet specialisation is empirically widespread and theoretically important to the organisation and dynamics of populations and communities. We used weighted networks to analyze the resource use by sea otters, testing three alternative models for how individual diet specialisation may arise. As expected, individual specialisation was absent when otter density was low, but increased at high-otter density. A high-density emergence of nested resource-use networks was consistent with the model assuming individuals share preference ranks. However, a density-dependent emergence of a non-nested modular network for core resources was more consistent with the competitive refuge model. Individuals from different diet modules showed predictable variation in rank-order prey preferences and handling times of core resources, further supporting the competitive refuge model. Our findings support a hierarchical organisation of diet specialisation and suggest individual use of core and marginal resources may be driven by different selective pressures.
Resumo:
Yield mapping represents the spatial variability concerning the features of a productive area and allows intervening on the next year production, for example, on a site-specific input application. The trial aimed at verifying the influence of a sampling density and the type of interpolator on yield mapping precision to be produced by a manual sampling of grains. This solution is usually adopted when a combine with yield monitor can not be used. An yield map was developed using data obtained from a combine equipped with yield monitor during corn harvesting. From this map, 84 sample grids were established and through three interpolators: inverse of square distance, inverse of distance and ordinary kriging, 252 yield maps were created. Then they were compared with the original one using the coefficient of relative deviation (CRD) and the kappa index. The loss regarding yield mapping information increased as the sampling density decreased. Besides, it was also dependent on the interpolation method used. A multiple regression model was adjusted to the variable CRD, according to the following variables: spatial variability index and sampling density. This model aimed at aiding the farmer to define the sampling density, thus, allowing to obtain the manual yield mapping, during eventual problems in the yield monitor.
Resumo:
Strongylosis in equids, despite being very common, have never been studied from a strictly ecological point of view. Mathematical models are important ecological tools used to study the temporal dynamics of parasite populations, and are useful to study the effect of different biological parameters, as well as to analyse the outcome produced by perturbations such as anthelmintic treatments. This work describes the study of the temporal dynamics of strongyles infection in an organic donkey population, performed using coprological quantitative analysis and donkeys’ age as a proxy of the time of infection. Force of infection was then estimated for Strongylus vulgaris and small strongyles and the results used as the basis for the development of mathematical models. In particular, the comparison of models output and field data made it possible to estimate the transmission coefficient and to consequently calculate the basic reproduction number R0 and the threshold host density. Small strongyles model includes hypobiosis and, more interestingly as never found in literature, a density-dependent development rate of hypobiotic larvae in adult parasites in order to simulate a negative feedback between larvae emergence from hypobiosis and adult parasite abundance. Simulations of pharmacological and environmental treatments showed that parasite eradication was possible for S. vulgaris only, while small strongyles, due to hypobiosis and density-dependent development rate of their hypobiotic larvae, are very difficult to control and impossible to eradicate. In addition, density-dependence in larval development has been demonstrated to act as a key factor in improving parasite population survival and abundance even in absence of human intervention.
Resumo:
In my doctoral thesis I investigated the evolution of demographic traits within eusocial Hymenoptera. In the social bees, wasps and ants, eusociality has a unique effect on life span evolution as female larvae with the same genetic background can develop through phenotypic plasticity to a queen or a worker with vastly diverging life-history traits. Ant queens belong to the longest-lived insect species, while workers in most species live only a fraction of the queen’s life span. The average colony size of a species is positively correlated with social complexity, division of labor and diverging morphological female phenotypes all of which also affect life span. Therefore the demographic traits of interest in this thesis were life span and colony size. To understand the evolution of worker life span I applied a trade-off model that includes both hierarchical levels important in eusocial systems, namely the colony- and the individual-level. I showed that the evolution of worker life span may be an adaptive trait on the colony level to optimize resource allocation and therefore fitness in response to different levels of extrinsic mortality. A shorter worker life span as a result of reduced resource investments under high levels of extrinsic mortality increases colony fitness. In a further study I showed that Lasius niger colonies produce different aging phenotypes throughout colony development. Smaller colonies which apply a different foraging strategy than larger colonies produced smaller workers, which in turn have a longer life span as compared to larger workers produced in larger colonies. With the switch to cooperative foraging in growing colonies individual workers become less important for the colony caused by their increasing redundancy. Alternatively a trade of between growth and life span may lead to the results found in this study. A further comparative analysis to study the effect of colony size on life span showed a correlation between queen and worker life span when colony size is taken into account. While neither worker nor queen life span was associated with colony size, the differences between queen and worker life span increase with larger average colony sizes across all eusocial Hymenoptera. As colony size affects both queen and worker life span, I aimed to understand which factors lead to the small colony sizes displayed by some ant species. I therefore analyzed per-capita productivity at different colony sizes of eight cavity dwelling ant species. Most colonies of the study species grew larger than optimal productivity predicted. Larger colony size was shown to increase colony homeostasis, the predictability of future productivity and in turn the survival probability of the colony. I also showed that species that deploy an individual foraging mode may circumvent the density dependent decline in foraging success by splitting the colony to several nest sites.
Resumo:
P>1. There are a number of models describing population structure, many of which have the capacity to incorporate spatial habitat effects. One such model is the source-sink model, that describes a system where some habitats have a natality that is higher than mortality (source) and others have a mortality that exceeds natality (sink). A source can be maintained in the absence of migration, whereas a sink will go extinct. 2. However, the interaction between population dynamics and habitat quality is complex, and concerns have been raised about the validity of published empirical studies addressing source-sink dynamics. In particular, some of these studies fail to provide data on survival, a significant component in disentangling a sink from a low quality source. Moreover, failing to account for a density-dependent increase in mortality, or decrease in fecundity, can result in a territory being falsely assigned as a sink, when in fact, this density-dependent suppression only decreases the population size to a lower level, hence indicating a 'pseudo-sink'. 3. In this study, we investigate a long-term data set for key components of territory-specific demography (mortality and reproduction) and their relationship to habitat characteristics in the territorial, group-living Siberian jay (Perisoreus infaustus). We also assess territory-specific population growth rates (r), to test whether spatial population dynamics are consistent with the ideas of source-sink dynamics. 4. Although average mortality did not differ between sexes, habitat-specific mortality did. Female mortality was higher in older forests, a pattern not observed in males. Male mortality only increased with an increasing amount of open areas. Moreover, reproductive success was higher further away from human settlement, indicating a strong effect of human-associated nest predators. 5. Averaged over all years, 76% of the territories were sources. These territories generally consisted of less open areas, and were located further away from human settlement. 6. The source-sink model provides a tool for modelling demography in distinct habitat patches of different quality, which can aid in identifying key habitats within the landscape, and thus, reduce the risk of implementing unsound management decisions.
Resumo:
Foot-and-mouth disease (FMD) is highly contagious and one of the most economically devastating diseases of cloven-hoofed animals. Scientific-based preparedness about how to best control the disease in a previously FMD-free country is therefore essential for veterinary services. The present study used a spatial, stochastic epidemic simulation model to compare the effectiveness of emergency vaccination with conventional (non-vaccination) control measures in Switzerland, a low-livestock density country. Model results revealed that emergency vaccination with a radius of 3 km or 10 km around infected premises (IP) did not significantly reduce either the cumulative herd incidence or epidemic duration if started in a small epidemic situation where the number of IPs is still low. However, in a situation where the epidemic has become extensive, both the cumulative herd incidence and epidemic duration are reduced significantly if vaccination were implemented with a radius of 10 km around IPs. The effect of different levels of conventional strategy measures was also explored for the non-vaccination strategy. It was found that a lower compliance level of farmers for movement restrictions and delayed culling of IPs significantly increased both the cumulative IP incidence and epidemic duration. Contingency management should therefore focus mainly on improving conventional strategies, by increasing disease awareness and communication with stakeholders and preparedness of culling teams in countries with a livestock structure similar to Switzerland; however, emergency vaccination should be considered if there are reasons to believe that the epidemic may become extensive, such as when disease detection has been delayed and many IPs are discovered at the beginning of the epidemic.
Resumo:
Growing cells are continuously processing signals of all varieties and responding to these signals by changes in cellular gene expression. One signal that cells in close proximity relay to each other is cell-cell contact. Non-transformed cells respond to cell-cell contact by arrest of growth and entry into G$\sb0,$ a process known as contact inhibition. Transformed cells do not respond to contact inhibition and continue to grow to high cell density, forming foci when in cell culture and tumors in the living organism. The events surrounding the generation, transduction, and response to cellular contact are poorly understood. In the present study, a novel gene product, drp, is shown to be expressed at high levels in cultured cells at high cell density. This density regulated protein, drp, has an apparent molecular weight of 70 kDa. Northern analysis shows drp to be highly expressed in cardiac and skeletal muscle and least abundant in lung and kidney tissues. By homology to two independently derived sequence tagged sites (STSs) used in the human genome project, drp or a closely related sequence maps to human chromosome 12. Density-dependent increases in drp expression have been demonstrated in six different cell lines including NIH 3T3, Hela and a human teratocarcinoma cell line, PA-1. Cells exhibit increased drp expression both when they are plated at increasing concentrations per unit area, or plated at low density and allowed to grow naturally to higher cell density. Cells at high density can exhibit several phenotypes including growth arrest, accumulation of soluble factors in the media, and increased numbers of cell contacts. Growth arrest by serum starvation or TGF-$\beta$ treatment fails to produce an increase in drp expression. Similarly, treatment of low density cells with conditioned media from high density cells fails to elicit drp expression. These results argue that neither soluble factors accumulated or expressed at high density nor simple exit from the cell cycle is sufficient to produce an increase in drp expression. The expression of drp appears to be uniquely regulated by cell density alone. ^
Resumo:
1 We used simulated and experimental plant populations to analyse mortality-driven pattern formation under size-dependent competition. Larger plants had an advantage under size-asymmetric but not under symmetric competition. Initial patterns were random or clumped. 2 The simulations were individual-based and spatially explicit. Size-dependent competition was modelled with different rules to partition overlapping zones of influence. 3 The experiment used genotypes of Arabidopsis thaliana with different morphological plasticity and hence size-dependent competition. Compared with wild types, transgenic individuals over-expressed phytochrome A and had decreased plasticity because of disabled phytochrome-mediated shade avoidance. Therefore, competition among transgenics was more asymmetric compared with wild-types. 4 Density-dependent mortality under symmetric competition did not substantially change the initial spatial pattern. Conversely, simulations under asymmetric competition and experimental patterns of transgenic over-expressors showed patterns of survivors that deviated substantially from random mortality independent of initial patterns. 5 Small-scale initial patterns of wild types were regular rather than random or clumped. We hypothesize that this small-scale regularity may be explained by early shade avoidance of seedlings in their cotyledon stage. 6 Our experimental results support predictions from an individual-based simulation model and support the conclusion that regular spatial patterns of surviving individuals should be interpreted as evidence for strong, asymmetric competitive interactions and subsequent density-dependent mortality.
Resumo:
1 Light availability may be crucial for understanding dynamics of plant–herbivore interactions in temperate and tropical forest communities. This is because local light availability can influence both tree seedling tolerance and susceptibility to herbivory – yet how they mediate levels of insect herbivory that vary with the density of host population is virtually unknown. Here we tested predictions of three key, non-mutually exclusive hypotheses of plant–herbivore interactions: the Limiting Resource Model (LRM), the Plant Vigour Hypothesis (PVH), and the Janzen-Connell Mechanism (JCM). 2 In an Amazonian forest, we planted Swietenia macrophylla seedlings (c. 5 months old) into natural canopy gaps and the shaded understorey and simulated the damage patterns of the specialist herbivore moth, Steniscadia poliophaea, by clipping seedling leaves. Over the next 8 months, we monitored seedling performance in terms of growth and survivorship and also quantified herbivory to new young leaves on a seasonal basis. 3 In support of the LRM, severe leaf damage (≥ 50%) was lethal for Swietenia macrophylla seedlings in the understorey, but in gaps only reduced seedling growth. In support of the PVH, gap seedlings suffered greater post-simulated herbivory (up to 100% defoliation) by S. poliophaea caterpillars than their understorey counterparts. 4 Adding a novel dimension to the Janzen–Connell hypothesis, we found that early wet season herbivory of seedlings in gaps increased with conspecific adult density within a 125-m radius; whereas in the understorey only those seedlings within 50 m of a Swietenia tree were attacked by caterpillars. 5 Synthesis. These results suggest lepidopterans that need young leaves for food may forage more widely in forests to find seedlings in light-rich canopy gaps. Moths may achieve this successfully by being first attracted to gaps, and then searching within them for suitable hosts. A conceptual model, integrating conspecific adult tree density with light-driven changes in seedling tolerance/vigour and their susceptibility to herbivory and mortality, is presented. Spatial variation in the light available to tree seedlings often affects their tolerance and vigour, which may have important consequences for leaf-chewing insects and the scale of density-dependent herbivory in forests.
Resumo:
We present an a priori theoretical framework for the interspecific allometric relationship between stand mass and plant population density. Our model predicts a slope of −\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}\frac{1}{3}\end{equation*}\end{document} between the logarithm of stand mass and the logarithm of stand density, thus conflicting with a previously assumed slope of −½. Our model rests on a heuristic separation of resource-limited living mass and structural mass in the plant body. We point out that because of similar resource requirements among plants of different sizes, a nonzero plant mass–density slope is primarily defined by structural mass. Specifically, the slope is a result of (i) the physical size-dependent relationship between stem width and height, (ii) foliage-dependent demands of conductance, and (iii) the cumulative nature of structural mass. The data support our model, both when the potential sampling bias of taxonomic relatedness is accounted for and when it is not. Independent contrasts analyses show that observed relationships among variables are not significantly different from the assumptions made to build the model or from its a priori predictions. We note that the dependence of the plant mass–density slope on the functions of structural mass provides a cause for the difference from the zero slope found in the animal population mass–density relationship; for the most part, animals do not have a comparable cumulative tissue type.
Resumo:
Across the boreal forest of North America, lynx populations undergo 10-year cycles. Analysis of 21 time series from 1821 to the present demonstrates that these fluctuations are generated by nonlinear processes with regulatory delays. Trophic interactions between lynx and hares cause delayed density-dependent regulation of lynx population growth. The nonlinearity, in contrast, appears to arise from phase dependencies in hunting success by lynx through the cycle. Using a combined approach of empirical, statistical, and mathematical modeling, we highlight how shifts in trophic interactions between the lynx and the hare generate the nonlinear process primarily by shifting functional response curves during the increase and the decrease phases.