138 resultados para defoliation
Resumo:
Alfalfa (Medicago sativa L.) roots contain large quantities of β-amylase, but little is known about its role in vivo. We studied this by isolating a β-amylase cDNA and by examining signals that affect its expression. The β-amylase cDNA encoded a 55.95-kD polypeptide with a deduced amino acid sequence showing high similarity to other plant β-amylases. Starch concentrations, β-amylase activities, and β-amylase mRNA levels were measured in roots of alfalfa after defoliation, in suspension-cultured cells incubated in sucrose-rich or -deprived media, and in roots of cold-acclimated germ plasms. Starch levels, β-amylase activities, and β-amylase transcripts were reduced significantly in roots of defoliated plants and in sucrose-deprived cell cultures. β-Amylase transcript was high in roots of intact plants but could not be detected 2 to 8 d after defoliation. β-Amylase transcript levels increased in roots between September and October and then declined 10-fold in November and December after shoots were killed by frost. Alfalfa roots contain greater β-amylase transcript levels compared with roots of sweetclover (Melilotus officinalis L.), red clover (Trifolium pratense L.), and birdsfoot trefoil (Lotus corniculatus L.). Southern analysis indicated that β-amylase is present as a multigene family in alfalfa. Our results show no clear association between β-amylase activity or transcript abundance and starch hydrolysis in alfalfa roots. The great abundance of β-amylase and its unexpected patterns of gene expression and protein accumulation support our current belief that this protein serves a storage function in roots of this perennial species.
Resumo:
Grazed pastures are the backbone of the Brazilian livestock industry and grasses of the genus Brachiaria (syn. Urochloa) are some of most used tropical forages in the country. Although the dependence on the forage resource is high, grazing management is often empirical and based on broad and non-specific guidelines. Mulato II brachiariagrass (Convert HD 364, Dow AgroSciences, São Paulo, Brazil) (B. brizantha × B. ruziziensis × B. decumbens), a new Brachiaria hybrid, was released as an option for a broad range of environmental conditions. There is no scientific information on specific management practices for Mulato II under continuous stocking in Brazil. The objectives of this research were to describe and explain variations in carbon assimilation, herbage accumulation (HA), plant-part accumulation, nutritive value, and grazing efficiency (GE) of Mulato II brachiariagrass as affected by canopy height and growth rate, the latter imposed by N fertilization rate, under continuous stocking. An experiment was carried out in Piracicaba, SP, Brazil, during two summer grazing seasons. The experimental design was a randomized complete block, with a 3 x 2 factorial arrangement, corresponding to three steady-state canopy heights (10, 25 and 40 cm) maintained by mimicked continuous stocking and two growth rates (imposed as 50 and 250 kg N ha-1 yr-1), with three replications. There were no height × N rate interactions for most of the responses studied. The HA of Mulato II increased linearly (8640 to 13400 kg DM ha-1 yr-1), the in vitro digestible organic matter (IVDOM) decreased linearly (652 to 586 g kg-1), and the GE decreased (65 to 44%) as canopy height increased. Thus, although GE and IVDOM were greatest at 10 cm height, HA was 36% less for the 10- than for the 40-cm height. The leaf carbon assimilation was greater for the shortest canopy (10 cm), but canopy assimilation was less than in taller canopies, likely a result of less leaf area index (LAI). The reductions in HA, plant-part accumulation, and LAI, were not associated with other signs of stand deterioration. Leaf was the main plant-part accumulated, at a rate that increased from 70 to 100 kg DM ha-1 d-1 as canopy height increased from 10 to 40 cm. Mulato II was less productive (7940 vs. 13380 kg ha-1 yr-1) and had lesser IVDOM (581 vs. 652 g kg-1) at the lower N rate. The increase in N rate affected plant growth, increasing carbon assimilation, LAI, rates of plant-part accumulation (leaf, stem, and dead), and HA. The results indicate that the increase in the rate of dead material accumulation due to more N applied is a result of overall increase in the accumulation rates of all plant-parts. Taller canopies (25 or 40 cm) are advantageous for herbage accumulation of Mulato II, but nutritive value and GE was greater for 25 cm, suggesting that maintaining ∼25-cm canopy height is optimal for continuously stocked Mulato II.
Resumo:
"3400"--P. [1].
Resumo:
Patch formation is common in grazed grasslands but the mechanisms involved in the formation and maintenance of patches are not clear. To increase our knowledge on this subject we examined possible reasons for patch formation and the influence of management on changes between patch states in three experiments in native pasture communities in the Crows Nest district, south-east Queensland. In these communities, small-scale patches (tall grassland (dominated by large and medium tussock grasses), short swards (dominated by short tussock grasses and sedges), and lawns (dominated by stoloniferous and/or rhizomatous grasses)) are readily apparent. We hypothesized that the formation of short sward and lawn patches in areas of tall grassland was due to combinations of grazing and soil fertility effects. This was tested in Experiment 1 by applying a factorial combination of defoliation, nutrient application and transplants of short tussock and stoloniferous species to a uniform area of tall grassland. Total species density declined during the experiment, was lower with high nutrient applications, but was not affected by defoliation. There were significant changes in abundance of species that provided support for our hypotheses. With light defoliation and low nutrients, the tall grassland remained dominated by large tussock grasses and contained considerable amounts of forbs. With heavy defoliation, the pastures were dominated by medium tussock grasses and there were significant decreases in forbs and increases in sedges (mainly with low nutrients) and stoloniferous grasses (mainly with high nutrients). Total germinable seed densities and those of most species groups were significantly lower in the heavy defoliation than the light defoliation plots. Total soil seed numbers were not affected by nutrient application but there were fewer seeds of the erect forbs and more sedge seeds in plots with high nutrients. The use of resting from grazing and fire to manage transitions between patches was tested. In Experiment 2, changes in species density and abundance were measured for 5 years in the three patch types with and without grazing. Experiment 3 examined the effects of fire, grazing and resting on short sward patches over 4 years. In Experiment 2, total species density was lower in lawn than short sward or tall grassland patches, and there were more species of erect forbs than other plant groups in all patch types. The lawn patches were originally dominated by Cynodon spp. This dominance continued with grazing but in ungrazed patches the abundance of Cynodon spp. declined and that of forbs increased. In the short sward patches, dominance of short tussock grasses continued with grazing but in ungrazed plots their abundance declined while that of large tussock grasses increased. The tall grassland patches remained dominated by large and medium tussock species. In Experiment 3, fire had no effect on species abundance. On the grazed plots the short tussock grasses remained dominant but where the plots were rested from grazing the small tussock grasses declined and the large tussock grasses increased in abundance. The slow and relatively small changes in these experiments over 4 or 5 years showed how stable the composition of these pastures is, and that rapid changes between patch types are unlikely.
Resumo:
This paper presents a new method for producing a functional-structural plant model that simulates response to different growth conditions, yet does not require detailed knowledge of underlying physiology. The example used to present this method is the modelling of the mountain birch tree. This new functional-structural modelling approach is based on linking an L-system representation of the dynamic structure of the plant with a canonical mathematical model of plant function. Growth indicated by the canonical model is allocated to the structural model according to probabilistic growth rules, such as rules for the placement and length of new shoots, which were derived from an analysis of architectural data. The main advantage of the approach is that it is relatively simple compared to the prevalent process-based functional-structural plant models and does not require a detailed understanding of underlying physiological processes, yet it is able to capture important aspects of plant function and adaptability, unlike simple empirical models. This approach, combining canonical modelling, architectural analysis and L-systems, thus fills the important role of providing an intermediate level of abstraction between the two extremes of deeply mechanistic process-based modelling and purely empirical modelling. We also investigated the relative importance of various aspects of this integrated modelling approach by analysing the sensitivity of the standard birch model to a number of variations in its parameters, functions and algorithms. The results show that using light as the sole factor determining the structural location of new growth gives satisfactory results. Including the influence of additional regulating factors made little difference to global characteristics of the emergent architecture. Changing the form of the probability functions and using alternative methods for choosing the sites of new growth also had little effect. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Small potted trees of Spondias purpurea were monitored to determine the costs and controls of flowering and fruiting. The effect of photoperiod, extremes in moisture and temperature, and defoliation were examined. The carbon exchange rates of the leaves, shoots and fruits were determined. Light response curves and diurnal levels were also investigated. $\sp{13}$Carbon labeling was used to determine which plant parts are carbon sinks. Photoperiod induces dormancy and bud activity. Extremes in soil moisture and temperature induce leaf fall. Flowers, fruits, and roots are carbon sinks. The results were used to develop a phenological model with latitude, soil moisture, and air temperature as variables. ^
Resumo:
Eddy covariance (EC) estimates of carbon dioxide (CO2) fluxes and energy balance are examined to investigate the functional responses of a mature mangrove forest to a disturbance generated by Hurricane Wilma on October 24, 2005 in the Florida Everglades. At the EC site, high winds from the hurricane caused nearly 100% defoliation in the upper canopy and widespread tree mortality. Soil temperatures down to -50 cm increased, and air temperature lapse rates within the forest canopy switched from statically stable to statically unstable conditions following the disturbance. Unstable conditions allowed more efficient transport of water vapor and CO2 from the surface up to the upper canopy layer. Significant increases in latent heat fluxes (LE) and nighttime net ecosystem exchange (NEE) were also observed and sensible heat fluxes (H) as a proportion of net radiation decreased significantly in response to the disturbance. Many of these impacts persisted through much of the study period through 2009. However, local albedo and MODIS (Moderate Resolution Imaging Spectro-radiometer) data (the Enhanced Vegetation Index) indicated a substantial proportion of active leaf area recovered before the EC measurements began 1 year after the storm. Observed changes in the vertical distribution and the degree of clumping in newly emerged leaves may have affected the energy balance. Direct comparisons of daytime NEE values from before the storm and after our measurements resumed did not show substantial or consistent differences that could be attributed to the disturbance. Regression analyses on seasonal time scales were required to differentiate the storm's impact on monthly average daytime NEE from the changes caused by interannual variability in other environmental drivers. The effects of the storm were apparent on annual time scales, and CO2 uptake remained approximately 250 g C m-2 yr-1 lower in 2009 compared to the average annual values measured in 2004-2005. Dry season CO2 uptake was relatively more affected by the disturbance than wet season values. Complex leaf regeneration dynamics on damaged trees during ecosystem recovery are hypothesized to lead to the variable dry versus wet season impacts on daytime NEE. In contrast, nighttime CO2 release (i.e., nighttime respiration) was consistently and significantly greater, possibly as a result of the enhanced decomposition of litter and coarse woody debris generated by the storm, and this effect was most apparent in the wet seasons compared to the dry seasons. The largest pre- and post-storm differences in NEE coincided roughly with the delayed peak in cumulative mortality of stems in 2007-2008. Across the hurricane-impacted region, cumulative tree mortality rates were also closely correlated with declines in peat surface elevation. Mangrove forest-atmosphere interactions are interpreted with respect to the damage and recovery of stand dynamics and soil accretion processes following the hurricane.
Resumo:
Angadenia berteroi is a tropical perennial subshrub of the pine rocklands with large yellow flowers that set very few fruits. My dissertation seeks to elucidate the factors that affect the reproductive fitness of Angadenia berteroi a native species of the south Florida pine rocklands. I provide novel information on the pollination biology of this native species. I also assess the effects of herbivory on growth and the reproductive success of A. berteroi. Finally, I elucidate how habitat fragmentation and quality are correlated with reproductive fitness of this native perennial plant. Using a novel experimental approach, I determined the most effective pollinator group. I used nylon fishing line of widths corresponding to proboscis diameter of the major groups of visitors to examine pollen removal and deposition. In the field, I estimated visitation frequency and efficacy of each pollinator type. Using potted plants, I exposed flowers to single visit from different types of pollinators to measure fruit set. I performed artificial defoliation with scissors on plants growing in the greenhouse to assess the effects of defoliation before flowering as well as during flowering. Additionally, I used structural equation modelling (SEM) to elucidate how A. berteroi reproductive fitness was affected by habitat fragmentation and quality. My experiments provide evidence that Angadenia berteroi is specialized for bee pollination; though butterflies, skippers and others also visit its flowers, A. berteroi is exclusively pollinated by two native bees of the South Florida pine rocklands . This research also demonstrated that herbivory by the oleander moth may have direct and indirect effects on Angadenia berteroi growth and reproductive success. The SEM results suggested that habitat quality (litter depth and subcanopy cover) may favor reproduction in native species of the South Florida pine rocklands that are properly maintained by periodic fires and exotic control. Insights from this threatened and charismatic species may provide impetus to properly manage remaining pine rocklands in South Florida for this and other endemic understory species.
Resumo:
In a context of climatic change, where high temperatures are frequent in the first phases of ripening, protecting bunches from solar radiation is essential to preserve berry colors. This thesis reports data collected in 2015 within a 3-year experiment conducted in Tebano (Faenza, Italy) in an organically-managed vineyard. Vines of cv Sangiovese submitted to post-veraison (15 Brix), pre-harvest late defoliation and post-veraison shoot positioning were compared with untreated controls. Treatments did not modify berry skin anthocyanins and flavonols, berry weight, soluble solids, pH, titratable acidity. Data are discussed in terms of the relevance of preserving berry skin anthocyanins and increasing berry skin flavonols through sustainable agronomic approaches for improving the color of young (co-pigmentation) and older (formation of polymeric pigments) wines. The benefits of late defoliations as an effective tool against Botrytis cluster rot are also discussed.
Resumo:
Aimed to identify, for assessing the tillering dynamics and morphogenesis , strategy (s ) suitable ( s) defoliation management to optimize the appearance of tillers and biomass of Urochloa Brizantha syn. Brachiaria brizantha cv. Marandu ( marandugrass ) throughout the year. The experiment was conducted from January 2013 to May 2014 were studied three strategies defoliation: Marandugrass with 30 cm throughout the experimental period (constant height); Marandugrass 15 cm in winter, the spring 30 cm and 45 cm in summer (increasing height); and Marandugrass 45 cm in winter, the spring 30 cm and 15 cm in summer (descending height). The experimental design was completely randomized in a split plot in time, with four replications. In winter, in the spring and summer, the following variables were calculated: appearance rate (TApP), mortality (TMoP) and survival (TSoP) of tillers, balance (BAL) between TApP and TMoP, stability index (IE) numbers of tillers and leaf elongation rates and stem, length of leaf blade and stem, leaf senescence rate, phyllochron and duration of life of the sheet. The TAPP was higher in the early spring and summer. For TMoP, the highest values were in the late spring and summer. The balance between TApP and TMoP was negative in winter and late spring, regardless of defoliation strategy. There was no difference in IE between the heights of the canopy during winter and late spring .. The number of tillers was higher in early spring and summer and lower in winter and late spring. The defoliation strategies have not changed phyllochron, leaf elongation rate. In spring and summer, there were increases in the rates of appearance, elongation and leaf senescence and, furthermore, decreased life span and phyllochron sheet. The plant height with increasing showed a lower rate of senescence and lower culm length in the spring. To increase the number of tillers marandu, it is advantageous to handle the plant with increasing height, ie, 15 cm in autumn and winter, the spring 30 cm and 45 cm in summer.The maintaining of B. brizantha cv. Marandu with fixed height of 30 cm or with variations between 15 and 45cm from the fall/winter to summer, does not influence the appearance and the growth of leaves per tiller, which indicates great flexibility on management defoliation in this forage plant.
Resumo:
The livestock system in Brazil mainly uses the pastures as source of food to cattle, and the marandu palisade grass is one of the main forage crop plants. In order to supply the demand of these animals in amount of forage, it is necessary to adopt management strategies aimed at increased forage production with adequate characteristics to animal intake. In this context, is requiered to identify management strategies of defoliation that improve tillering of marandu palisade grass during the seasons. There is a chance that the maintenance of lower marandu palisade grass during the fall and winter compared to spring and summer, increase the incidence of light at the base of the plants and, indeed, encourage tillering and modify the structure of the pasture compared to maintain marandu palisade grass with constant height along these stations.
Resumo:
Phytophthora cinnamomi is a major pathogen in most macadamia plantations worldwide. Due to stem lesions, stem cankers and leaf defoliation it results in loss of productivity and tree death. In this study we examined accessions of the four Macadamia species and their hybrids, produced via rooted stem cuttings or germinated seeds, for susceptibility to stem canker and necrotic lesion caused by P. cinnamomi. Plants were wound-inoculated with agar containing P. cinnamomi. The symptoms produced in inoculated plants were used to characterize host susceptibility variation within and among the population. Lesion lengths and severity of stem canker were recorded. The four species and hybrids differed significantly in stem canker severity (P < 0.001) and lesion length (P = 0.04). M. integrifolia and M. tetraphylla hybrids were the most susceptible. M. integrifolia had the greatest stem canker severity and the most extensive lesions above and below the site of inoculation. Restricted lesion sizes were observed in M. ternifolia and M. jansenii. The effects of basal stem diameter and the method of propagation either from cuttings or seed were not significant. The genetic variation in the reactions of macadamia accessions to stem infection by P. cinnamomi is discussed.
Resumo:
O objetivo do presente trabalho foi avaliar o crescimento e a produção de Anthurium andraeanum 'Apalai' submetido a diferentes intensidades de desfolha no Vale do Ribeira, SP. Foram utilizadas mudas micropropagadas dessa espécie, as quais foram plantadas em canteiros construídos sob telado coberto com tela de náilon preta, com malha que proporciona 70% de sombreamento, no espaçamento 0,40x0,40m. O experimento foi conduzido em delineamento de blocos casualizados em parcelas subdivididas, com dezesseis repetições. O efeito da desfolha foi avaliado na parcela e o efeito do tempo após a desfolha na subparcela. As diferentes intensidades de desfolha consistiram em plantas com três, quatro e cinco folhas e plantas sem desfolha, e o tempo após a desfolha, as avaliações realizadas em 2006 e 2007. Ocorreu um aumento na área das folhas individuais em plantas mantidas com quatro e cinco folhas, proporcional à intensidade de desfolha, que pode ser relacionado a uma tentativa de compensação da área foliar perdida. A desfolha com a manutenção de três, quatro ou cinco folhas em plantas de antúrio 'Apalai' é prejudicial para o seu crescimento e produção.
Resumo:
Mestrado Vinifera Euromaster - Instituto Superior de Agronomia - UL
Resumo:
Understanding and predicting plant response to disturbance is of paramount importance in our changing world. Resprouting ability is often considered a simple qualitative trait and used in many ecological studies. Our aim is to show some of the complexities of resprouting while highlighting cautions that need be taken in using resprouting ability to predict vegetation responses across disturbance types and biomes. There are marked differences in resprouting depending on the disturbance type, and fire is often the most severe disturbance because it includes both defoliation and lethal temperatures. In the Mediterranean biome, there are differences in functional strategies to cope with water deficit between resprouters (dehydration avoiders) and nonresprouters (dehydration tolerators); however, there is little research to unambiguously extrapolate these results to other biomes. Furthermore, predictions of vegetation responses to changes in disturbance regimes require consideration not only of resprouting, but also other relevant traits (e.g. seeding, bark thickness) and the different correlations among traits observed in different biomes; models lacking these details would behave poorly at the global scale. Overall, the lessons learned from a given disturbance regime and biome (e.g. crown-fire Mediterranean ecosystems) can guide research in other ecosystems but should not be extrapolated at the global scale.