525 resultados para cyclin E


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The protein kinase inhibitor staurosporine has been shown to induce G1 phase arrest in normal cells but not in most transformed cells. Staurosporine did not induce G1 phase arrest in the bladder carcinoma cell line 5637 that lacks a functional retinoblastoma protein (pRB-). However, when infected with a pRB-expressing retrovirus [Goodrich, D. W., Chen, Y., Scully, P. & Lee, W.-H. (1992) Cancer Res. 52, 1968-1973], these cells, now pRB+, were arrested by staurosporine in G1 phase. This arrest was accompanied by the accumulation of hypophosphorylated pRB. In both the pRB+ and pRB- cells, cyclin D1-associated kinase activities were reduced on staurosporine treatment. In contrast, cyclin-dependent kinase (CDK) 2 and cyclin E/CDK2 activities were inhibited only in pRB+ cells. Staurosporine treatment did not cause reductions in the protein levels of CDK4, cyclin D1, CDK2, or cyclin E. The CDK inhibitor proteins p21(Waf1/Cip1) and p27 (Kip1) levels increased in staurosporine-treated cells. Immunoprecipitation of CDK2, cyclin E, and p2l from staurosporine-treated pRB+ cells revealed a 2.5- to 3-fold higher ratio of p2l bound to CDK2 compared with staurosporine-treated pRB- cells. In pRB+ cells, p2l was preferentially associated with Thrl6O phosphorylated active CDK2. In pRB- cells, however, p2l was bound preferentially to the unphosphorylated, inactive form of CDK2 even though the phosphorylated form was abundant. This is the first evidence suggesting that G1 arrest by 4 nM staurosporine is dependent on a functional pRB protein. Cell cycle arrest at the pRB- dependent checkpoint may prevent activation of cyclin E/CDK2 by stabilizing its interaction with inhibitor proteins p2l and p27.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

p107 is a retinoblastoma protein-related phosphoprotein that, when overproduced, displays a growth inhibitory function. It interacts with and modulates the activity of the transcription factor, E2F-4. In addition, p107 physically associates with cyclin E-CDK2 and cyclin A-CDK2 complexes in late G1 and at G1/S, respectively, an indication that cyclin-dependent kinase complexes may regulate, contribute to, and/or benefit from p107 function during the cell cycle. Our results show that p107 phosphorylation begins in mid G1 and proceeds through late G1 and S and that cyclin D-associated kinase(s) contributes to this process. In addition, E2F-4 binds selectively to hypophosphorylated p107, and G1 cyclin-dependent p107 phosphorylation leads to the dissociation of p107-E2F-4 complexes as well as inactivation of p107 G1 blocking function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclins are cell cycle regulators whose proteins oscillate dramatically during the cell cycle. Cyclin steady-state mRNA levels also fluctuate, and there are indications that both their rate of transcription and mRNA stability are under cell cycle control. Here, we demonstrate the transcriptional regulation of higher eukaryote cyclins throughout the whole cell cycle with a high temporal resolution. The promoters of two Arabidopsis cyclins, cyc3aAt and cyc1At, mediated transcriptional oscillation of the beta-glucuronidase (gus) reporter gene in stably transformed tobacco BY-2 cell lines. The rate of transcription driven by the cyc3aAt promoter was very low during G1, slowly increased during the S phase, peaked at the G2 phase and G2-to-M transition, and was down-regulated before early metaphase. In contrast, the rate of the cyc1At-related transcription increased upon exit of the S phase, peaked at the G2-to-M transition and during mitosis, and decreased upon exit from the M phase. This study indicates that transcription mechanisms that seem to be conserved among species play a significant role in regulating the mRNA abundance of the plant cyclins. Furthermore, the transcription patterns of cyc3aAt and cyc1At were coherent with their slightly higher sequence similarity to the A and B groups of animal cyclins, respectively, suggesting that they may fulfill comparable roles during the cell cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ubiquitin-dependent proteolysis of the mitotic cyclins A and B is required for the completion of mitosis and entry into the next cell cycle. This process is catalyzed by the cyclosome, an approximately 22S particle that contains a cyclin-selective ubiquitin ligase activity, E3-C, that requires a cyclin-selective ubiquitin carrier protein (UBC) E2-C. Here we report the purification and cloning of E2-C from clam oocytes. The deduced amino acid sequence of E2-C indicates that it is a new UBC family member. Bacterially expressed recombinant E2-C is active in in vitro cyclin ubiquitination assays, where it exhibits the same substrate specificities seen with native E2-C. These results demonstrate that E2-C is not a homolog of UBC4 or UBC9, proteins previously suggested to be involved in cyclin ubiquitination, but is a new UBC family member with unique properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alterations of various components of the cell cycle regulatory machinery that controls the progression of cells from a quiescent to a growing state contribute to the development of many human cancers. Such alterations include the deregulated expression of G1 cyclins, the loss of function of activities such as those of protein p16INK4a that control G1 cyclin-dependent kinase activity, and the loss of function of the retinoblastoma protein (RB), which is normally regulated by the G1 cyclin-dependent kinases. Various studies have revealed an inverse relationship in the expression of p16INK4a protein and the presence of functional RB in many cell lines. In this study we show that p16INK4a is expressed in cervical cancer cell lines in which the RB gene, Rb, is not functional, either as a consequence of Rb mutation or expression of the human papillomavirus E7 protein. We also demonstrate that p16INK4a levels are increased in primary cells in which RB has been inactivated by DNA tumor virus proteins. Given the role of RB in controlling E2F transcription factor activity, we investigated the role of E2F in controlling p16INK4a expression. We found that E2F1 overexpression leads to an inhibition of cyclin D1-dependent kinase activity and induces the expression of a p16-related transcript. We conclude that the accumulation of G1 cyclin-dependent kinase activity during normal G1 progression leads to E2F accumulation through the inactivation of RB, and that this then leads to the induction of cyclin kinase inhibitor activity and a shutdown of G1 kinase activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During Drosophila development, nuclear and cell divisions are coordinated in response to developmental signals. In yeast and mammalian cells, signals that control cell division regulate the activity of cyclin-dependent kinases (Cdks) through proteins such as cyclins that interact with the Cdks. Here we describe two Drosophila cyclins identified from a set of Cdk-interacting proteins. One, cyclin J, is of a distinctive sequence type; its exclusive maternal expression pattern suggests that it may regulate oogenesis or the early nuclear divisions of embryogenesis. The other belongs to the D class of cyclins, previously identified in mammalian cells. We show that Drosophila cyclin D is expressed in early embryos and in imaginal disc cells in a pattern that anticipates cell divisions. Expression in the developing eye disc at the anterior edge of the morphogenetic furrow suggests that cyclin D acts early, prior to cyclin E, in inducing G1-arrested cells to enter S phase. Our results also suggest that, although cyclin D may be necessary, its expression alone is not sufficient to initiate the events leading to S phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parental origin-specific alterations of chromosome 11p15 in human cancer suggest the involvement of one or more maternally expressed imprinted genes involved in embryonal tumor suppression and the cancer-predisposing Beckwith-Wiedemann syndrome (BWS). The gene encoding cyclin-dependent kinase inhibitor p57KIP2, whose overexpression causes G1 phase arrest, was recently cloned and mapped to this band. We find that the p57KIP2 gene is imprinted, with preferential expression of the maternal allele. However, the imprint is not absolute, as the paternal allele is also expressed at low levels in most tissues, and at levels comparable to the maternal allele in fetal brain and some embryonal tumors. The biochemical function, chromosomal location, and imprinting of the p57KIP2 gene match the properties predicted for a tumor suppressor gene at 11p15.5. However, as the p57KIP2 gene is 500 kb centromeric to the gene encoding insulin-like growth factor 2, it is likely to be part of a large domain containing other imprinted genes. Thus, loss of heterozygosity or loss of imprinting might simultaneously affect several genes at this locus that together contribute to tumor and/or growth- suppressing functions that are disrupted in BWS and embryonal tumors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have analyzed cyclin E1, a protein that is essential for the G1/S transition, during early development in Xenopus embryos. Cyclin E1 was found to be abundant in eggs, and after fertilization, until the midblastula transition (MBT) when levels of cyclin E1 protein, and associated kinase activity, were found to decline precipitously. Our results suggest that the reduced level of the cyclin E1 protein detected after the MBT does not occur indirectly as a result of degradation of the maternally encoded cyclin E1 mRNA. Instead, the stability of cyclin E1 protein appears to play a major role in reduction of cyclin E1 levels at this time. Cyclin E1 protein was found to be stable during the cleavage divisions but degraded with a much shorter half-life after the MBT. Activation of cyclin E1 protein turnover occurs independent of cell cycle progression, does not require ongoing protein synthesis, and is not triggered as a result of the ratio of nuclei to cytoplasm in embryonic cells that initiates the MBT. We therefore propose that a developmental timing mechanism measures an approximately 5-hr time period, from the time of fertilization, and then allows activation of a protein degradative pathway that regulates cyclin E1. Characterization of the timer suggests that it might be held inactive in eggs by a mitogen-activated protein kinase signal transduction pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure of m7GpppN (where N is any nucleotide), termed cap, is present at the 5' end of all eukaryotic cellular mRNAs (except organellar). The eukaryotic initiation factor 4E (eIF-4E) binds to the cap and facilitates the formation of translation initiation complexes. eIF-4E is implicated in control of cell growth, as its overexpression causes malignant transformation of rodent cells and deregulates HeLa cell growth. It was suggested that overexpression of eIF-4E results in the enhanced translation of poorly translated mRNAs that encode growth-promoting proteins. Indeed, enhanced expression of several proteins, including cyclin D1 and ornithine decarboxylase (ODC), was documented in eIF-4E-overexpressing NTH 3T3 cells. However, the mechanism underlying this increase has not been elucidated. Here, we studied the mode by which eIF-4E increases the expression of cyclin D1 and ODC. We show that the increase in the amount of cyclin D1 and ODC is directly proportional to the degree of eIF-4E overexpression. Two mechanisms, which are not mutually exclusive, are responsible for the increase. In eIF-4E-overexpressing cells the rate of translation initiation of ODC mRNA was increased inasmuch as the mRNA sedimented with heavier polysomes. For cyclin D1 mRNA, translation initiation was not increased, but rather its amount in the cytoplasm increased, without a significant increase in total mRNA. Whereas, in the parental NIH 3T3 cell line, a large proportion of the cyclin D1 mRNA was confined to the nucleus, in eIF-4E-overexpressing cells the vast majority of the mRNA was present in the cytoplasm. These results indicate that eIF-4E affects directly or indirectly mRNA nucleocytoplasmic transport, in addition to its role in translation initiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The activity of maturation-promoting factor (MPF), a protein kinase complex composed of p34cdc2 and cyclin B, is undetectable during interphase but rises abruptly at the G2/M transition to induce mitosis. After the synthesis of cyclin B, the suppression of MPF activity before mitosis has been attributed to the phosphorylation of p34cdc2 on sites (threonine-14 and tyrosine-15) that inhibit its catalytic activity. We previously showed that the activity of the mitotic p34cdc2/cyclin B complex is rapidly suppressed when added to interphase Xenopus extracts that lack endogenous cyclin B. Here we show that a mutant of p34cdc2 that cannot be inhibited by phosphorylation (threonine-14-->alanine, tyrosine-15-->phenylalanine) is also susceptible to inactivation, demonstrating that inhibitory mechanisms independent of threonine-14 and tyrosine-15 phosphorylation must exist. We have partially characterized this inhibitory pathway as one involving a reversible binding inhibitor of p34cdc2/cyclin B that is tightly associated with cell membranes. Kinetic analysis suggests that this inhibitor, in conjunction with the kinases that mediate the inhibitory phosphorylations on p34cdc2, maintains the interphase state in Xenopus; it may play an important role in the exact timing of the G2/M transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A variety of results point to the transcription factor E2F as a critical determinant of the G1/S-phase transition during the cell cycle in mammalian cells, serving to activate the transcription of a group of genes that encode proteins necessary for DNA replication. In addition, E2F activity appears to be directly regulated by the action of retinoblastoma protein (RB) and RB-related proteins and indirectly regulated through the action of G1 cyclins and associated kinases. We now show that the accumulation of G1 cyclins is regulated by E2F1. E2F binding sites are found in both the cyclin E and cyclin D1 promoters, both promoters are activated by E2F gene products, and at least for cyclin E, the E2F sites contribute to cell cycle-dependent control. Most important, the endogenous cyclin E gene is activated following expression of the E2F1 product encoded by a recombinant adenovirus vector. These results suggest the involvement of E2F1 and cyclin E in an autoregulatory loop that governs the accumulation of critical activities affecting the progression of cells through G1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclin A is involved in the control of S phase and mitosis in mammalian cells. Expression of the cyclin A gene in nontransformed cells is characterized by repression of its promoter during the G1 phase of the cell cycle and its induction at S-phase entry. We show that this mode of regulation is mediated by the transcription factor E2F, which binds to a specific site in the cyclin A promoter. It differs from the prototype E2F site in nucleotide sequence and protein binding; it is bound by E2F complexes containing cyclin E and p107 but not pRB. Ectopic expression of cyclin D1 triggers premature activation of the cyclin A promoter by E2F, and this effect is blocked by the tumor suppressor protein p16INK4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have isolated a gene encoding Xic-1, a 27-kDa cyclin-dependent kinase (Cdk) inhibitor from Xenopus ovary that shares significant homology with both mammalian CIP1 and Kip1/Kip2. The N- and C-terminal halves of Xic-1 are sufficient for interacting with Cdks and proliferating cell nuclear antigen, respectively. Recombinant Xic-1 inhibits Xenopus cyclin E/Cdk2, cyclin A/Cdk2 and cyclin B/Cdc2 activities, although with quite different IC50 values. Truncation of the N terminus of Xic-1 increases the IC50 value for cyclin A/Cdk2 50-fold with no effect on the inhibition of cyclin E/Cdk2 or cyclin B/Cdc2.Xic-1 inhibits both single-stranded and nuclear DNA synthesis in egg extracts, an effect reversed by proliferating cell nuclear antigen or cyclin E/Cdk2, respectively. These results suggest a function for Xic-1 in the control of DNA synthesis by cyclin E/Cdk2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oncogenic signals induce cellular proliferation by deregulating the cell division cycle. Cyclin D1, a regulator of G1-phase progression, acts synergistically with ABL oncogenes in transforming fibroblasts and hematopoietic cells in culture. Synergy with v-Abl depended on a motif in cyclin D1 that mediates its binding to the retinoblastoma protein, suggesting that ABL oncogenes in part mediate their mitogenic effects via a retinoblastoma protein-dependent pathway. Overexpression of cyclin D1, but not cyclin E, rescued a signaling-defective src-homology 2 (SH2) domain mutant of BCR-ABL for transformation of cells in culture and malignant tumor formation in vivo. These results demonstrate that cyclin D1 can provide essential signals for malignant transformation in concert with an activated tyrosine kinase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclin B/cdc2 is responsible both for driving cells into mitosis and for activating the ubiquitin-dependent degradation of mitotic cyclins near the end of mitosis, an event required for the completion of mitosis and entry into interphase of the next cell cycle. Previous work with cell-free extracts of rapidly dividing clam embryos has identified two specific components required for the ubiquitination of mitotic cyclins: E2-C, a cyclin-selective ubiquitin carrier protein that is constitutively active during the cell cycle, and E3-C, a cyclin-selective ubiquitin ligase that purifies as part of a approximately 1500-kDa complex, termed the cyclosome, and which is active only near the end of mitosis. Here, we have separated the cyclosome from its ultimate upstream activator, cdc2. The mitotic, active form of the cyclosome can be inactivated by incubation with a partially purified, endogenous okadaic acid-sensitive phosphatase; addition of cdc2 restores activity to the cyclosome after a lag that reproduces that seen previously in intact cells and in crude extracts. These results demonstrate that activity of cyclin-ubiquitin ligase is controlled by reversible phosphorylation of the cyclosome complex.