953 resultados para critical properties
Resumo:
The localization and dispersion quality of as received NH2 terminated multiwall carbon nanotubes (MWNT-I) and ethylene diamine (EDA) functionalized MWNTs in melt mixed blends of polycarbonate ( PC) and poly(styrene-co-acrylonitrile) (SAN) were assessed in this study using rheo-electrical and electromagnetic interference (EMI) shielding measurements. In order to improve the dispersion quality and also to selectively localize MWNTs in the PC phase of the blends, EDA was grafted onto MWNTs by two different strategies like diazonium reaction of the para-substituted benzene ring of MWNTs with EDA ( referred to as MWNT-II) and acylation of carboxyl functionalized MWNTs with thionyl chloride ( referred to as MWNT-III). By this approach we could systematically vary the concentration of NH2 functional groups on the surface of MWNTs at a fixed concentration (1 wt%) in PC/SAN blends. XPS was carried to evaluate the % concentration of N in different MWNTs and was observed to be highest for MWNT-III manifesting in a large surface coverage of EDA on the surface of MWNTs. Viscoelastic properties and melt electrical conductivities were measured to assess the dispersion quality of MWNTs using a rheo-electrical set-up both in the quiescent as well as under steady shear conditions. Rheological properties revealed chain scission of PC in the presence of MWNT-III which is due to specific interactions between EDA and PC leading to smaller PC grafts on the surface of MWNTs. The observed viscoelastic properties in the blends were further correlated with the phase morphologies under quiescent and annealed conditions. Electromagnetic interference (EMI) shielding effectiveness in X and K-u-band frequencies were measured to explore these composites for EMI shielding applications. Interestingly, MWNT-II showed the highest electrical conductivity and EMI shielding in the blends.
Resumo:
This paper attempts to gain an understanding of the effect of lamellar length scale on the mechanical properties of two-phase metal-intermetallic eutectic structure. We first develop a molecular dynamics model for the in-situ grown eutectic interface followed by a model of deformation of Al-Al2Cu lamellar eutectic. Leveraging the insights obtained from the simulation on the behaviour of dislocations at different length scales of the eutectic, we present and explain the experimental results on Al-Al2Cu eutectic with various different lamellar spacing. The physics behind the mechanism is further quantified with help of atomic level energy model for different length scale as well as different strain. An atomic level energy partitioning of the lamellae and the interface regions reveals that the energy of the lamellae core are accumulated more due to dislocations irrespective of the length-scale. Whereas the energy of the interface is accumulated more due to dislocations when the length-scale is smaller, but the trend is reversed when the length-scale is large beyond a critical size of about 80 nm. (C) 2014 Author(s).
Resumo:
Current interferon alpha-based treatment of hepatitis C virus (HCV) infection fails to cure a sizeable fraction of patients treated. The cause of this treatment failure remains unknown. Here using mathematical modelling, we predict treatment failure to be a consequence of the emergent properties of the interferon-signalling network. HCV induces bistability in the network, creating a new steady state where it can persist. Cells that admit the new steady state alone are refractory to interferon. Using a model of viral kinetics, we show that when the fraction of cells refractory to interferon in a patient exceeds a critical value, treatment fails. Direct-acting antivirals that suppress HCV replication can eliminate the new steady state, restoring interferon sensitivity and improving treatment response. Our study thus presents a new conceptual basis of HCV persistence and treatment response, elucidates the origin of the synergy between interferon and direct-acting antivirals, and facilitates rational treatment optimization.
Resumo:
The highly complex structure-property interrelationship in the lead-free piezoelectric (x) Na1/2Bi1/2TiO3 - (1 - x) BaTiO3 is a subject of considerable contemporary debate. Using comprehensive x-ray, neutron diffraction, dielectric, and ferroelectric studies, we have shown the existence of a new criticality in this system at x = 0.80, i.e., well within the conventional tetragonal phase field. This criticality manifests as a nonmonotonic variation of the tetragonality and coercivity and is shown to be associated with a crossover from a nonmodulated tetragonal phase (for x < 0.8) to a long-period modulated tetragonal phase (for x > 0.80). It is shown that the stabilization of long-period modulation introduces a characteristic depolarization temperature in the system. While differing qualitatively from the two-phase model often suggested for the critical compositions of this system, our results support the view with regard to the tendency in perovskites to stabilize long-period modulated structures as a result of complex interplay of antiferrodistortive modes Bellaiche and Iniguez, Phys. Rev. B 88, 014104 ( 2013); Prosandeev, Wang, Ren, Iniguez, ands Bellaiche, Adv. Funct. Mater. 23, 234 (2013)].
Resumo:
With the emergence of scientific interest in graphene oxide (GO) in recent times, researchers have endeavored to incorporate GO in thermoset polymeric matrix to develop composites with extraordinary set of properties. The current state of research in graphene/thermoset polymer composites is highlighted here with a focus on the role of interface in dictating the overall properties of the composites. Different strategies like covalent and non-covalent functionalization of GO have been discussed with respect to improvement in mechanical, electrical, thermal and rheological properties. In addition, future prospects have been outlined. By assessing the current state of research in graphene/thermoset composites, it is obvious that graphene derivatives are promising materials in enhancing the structural properties of the nanocomposites at extremely low levels of filler loading. This opens new avenues in designing lightweight composites for myriad applications and by tailoring the interfacial adhesion with the polymer, ordered structure can be achieved at macroscopic processing scales. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Tin (II) sulphide (SnS), a direct band gap semiconductor compound, has recently received great attention due to its unique properties. Because of low cost, absence of toxicity, and good abundance in nature, it is becoming a candidate for future multifunctional devices particularly for light conversion applications. Although the current efficiencies are low, the cost-per-Watt is becoming competitive. At room temperature, SnS exhibits stable low-symmetric, double-layered orthorhombic crystal structure, having a = 0.4329, b = 1.1192, and c = 0.3984nm as lattice parameters. These layer-structured materials are of interest in various device applications due to the arrangement of structural lattice with cations and anions. The layers of cations are separated only by van der Waals forces that provide intrinsically chemically inert surface without dangling bonds and surface density of states. As a result, there is no Fermi level pinning at the surface of the semiconductor. This fact leads to considerably high chemical and environmental stability. Further, the electrical and optical properties of SnS can be easily tailored by modifying the growth conditions or doping with suitable dopants without disturbing its crystal structure.In the last few decades, SnS has been synthesized and studied in the form of single-crystals and thin-films. Most of the SnS single-crystals have been synthesized by Bridgeman technique, whereas thin films have been developed using different physical as well as chemical deposition techniques. The synthesis or development of SnS structures in different forms including single-crystals and thin films, and their unique properties are reviewed here. The observed physical and chemical properties of SnS emphasize that this material could has novel applications in optoelectronics including solar cell devices, sensors, batteries, and also in biomedical sciences. These aspects are also discussed.
Resumo:
Undoped and Ln(3+) (Eu and Tb)-doped crystalline nanobundles of YPO4 were prepared by a facile microwave-assisted route with water as a solvent and without using any surfactant. TEM investigations reveal that the as-prepared powder consists of lenticular-shaped nanobundles (similar to 100 nm in diameter) made of very small nanorods with diameter less than 10 nm and length varying from 20 to 50 nm. Each nanorod in turn is single crystalline, as revealed by HRTEM imaging. The as-prepared nanobundles are easily dispersible in various solvents, especially water, without any surface functionalization, which is critical for various bio-probe applications like cell and tissue imaging. The Eu- and Tb-doped YPO4 nanobundles show good photoluminescence properties and were further evaluated for their use as fluorescent biolabels. Our results show that HeLa cells labelled with Eu- and Tb-doped YPO4 nanobundles show bright red (Eu) and green (Tb) intracellular luminescence under a confocal microscope. Concentration-and time-dependent MTT cell viability assays show that the nanobundles show low toxicity towards cells which makes them promising in bioimaging field.
Resumo:
Biogenesis of the iron-sulfur (Fe-S) cluster is an indispensable process in living cells. In mammalian mitochondria, the initial step of the Fe-S cluster assembly process is assisted by the NFS1-ISD11 complex, which delivers sulfur to scaffold protein ISCU during Fe-S cluster synthesis. Although ISD11 is an essential protein, its cellular role in Fe-S cluster biogenesis is still not defined. Our study maps the important ISD11 amino acid residues belonging to putative helix 1 (Phe-40), helix 3 (Leu-63, Arg-68, Gln-69, Ile-72, Tyr-76), and C-terminal segment (Leu-81, Glu-84) are critical for in vivo Fe-S cluster biogenesis. Importantly, mutation of these conserved ISD11 residues into alanine leads to its compromised interaction with NFS1, resulting in reduced stability and enhanced aggregation of NFS1 in the mitochondria. Due to altered interaction with ISD11 mutants, the levels of NFS1 and Isu1 were significantly depleted, which affects Fe-S cluster biosynthesis, leading to reduced electron transport chain complex (ETC) activity and mitochondrial respiration. In humans, a clinically relevant ISD11 mutation (R68L) has been associated in the development of a mitochondrial genetic disorder, COXPD19. Our findings highlight that the ISD11 R68A/R68L mutation display reduced affinity to form a stable subcomplex with NFS1, and thereby fails to prevent NFS1 aggregation resulting in impairment of the Fe-S cluster biogenesis. The prime affected machinery is the ETC complex, which showed compromised redox properties, causing diminished mitochondrial respiration. Furthermore, the R68L ISD11 mutant displayed accumulation of mitochondrial iron and reactive oxygen species, leading to mitochondrial dysfunction, which correlates with the phenotype observed in COXPD19 patients.
Resumo:
The complexity associated with local structures continues to pose challenges with regard to the understanding of the structure-property relationship in Na1/2Bi1/2TiO3-based lead-free piezoceramics. (1-x)Na1/2Bi1/2TiO3-(x)BaTiO3 is an extensively studied system because of its interesting piezoelectric properties. Recently, a room temperature phase boundary was reported at x = 0.03 in this system Ma et al., Adv. Funct. Mater. 23, 5261 (2013)]. In the present work we have examined this subtle phase boundary using x-ray diffraction, neutron diffraction, dielectric measurements as a function of composition (x < 0.06), temperature, and electric field. Our results show that this boundary separates an R3c + Cc-like structural state for x < 0.03 from an R3c+ cubiclike structural state for 0.03 <= x <= 0.05 in the unpoled specimens. This phase boundary is characterized by an anomalous reduction in the depolarization temperature, and a suppression of the tetragonal distortion of the high temperature P4bm phase. Our results also provide the clue to understand the pathway leading to the cubiclike structure of the critical composition x = 0.06, known for its highest piezoelectric response.
Resumo:
The Load-Unload Response Ratio (LURR) method is an intermediate-term earthquake prediction approach that has shown considerable promise. It involves calculating the ratio of a specified energy release measure during loading and unloading where loading and unloading periods are determined from the earth tide induced perturbations in the Coulomb Failure Stress on optimally oriented faults. In the lead-up to large earthquakes, high LURR values are frequently observed a few months or years prior to the event. These signals may have a similar origin to the observed accelerating seismic moment release (AMR) prior to many large earthquakes or may be due to critical sensitivity of the crust when a large earthquake is imminent. As a first step towards studying the underlying physical mechanism for the LURR observations, numerical studies are conducted using the particle based lattice solid model (LSM) to determine whether LURR observations can be reproduced. The model is initialized as a heterogeneous 2-D block made up of random-sized particles bonded by elastic-brittle links. The system is subjected to uniaxial compression from rigid driving plates on the upper and lower edges of the model. Experiments are conducted using both strain and stress control to load the plates. A sinusoidal stress perturbation is added to the gradual compressional loading to simulate loading and unloading cycles and LURR is calculated. The results reproduce signals similar to those observed in earthquake prediction practice with a high LURR value followed by a sudden drop prior to macroscopic failure of the sample. The results suggest that LURR provides a good predictor for catastrophic failure in elastic-brittle systems and motivate further research to study the underlying physical mechanisms and statistical properties of high LURR values. The results provide encouragement for earthquake prediction research and the use of advanced simulation models to probe the physics of earthquakes.
Resumo:
An electron cyclotron wave resonant methane plasma discharge was used for the high rate deposition of hydrogenated amorphous carbon (a-C:H). Deposition rates of up to ∼400 Å/min were obtained over substrates up to 2.5 in. in diameter with a film thickness uniformity of ∼±10%. The deposited films were characterised in terms of their mass density, sp3 and hydrogen contents, C-H bonding, intrinsic stress, scratch resistance and friction properties. The deposited films possessed an average sp3 content, mass density and refractive index of ∼58%, 1.76 g/cm3 and 2.035 respectively.Mechanical characterisation indicated that the films possessed very low steady-state coefficients of friction (ca. 0.06) and a moderate shear strength of ∼141 MPa. Nano-indentation measurements also indicated a hardness and elastic modulus of ∼16.1 and 160 GPa respectively. The critical loads required to induce coating failure were also observed to increase with ion energy as a consequence of the increase in degree of ion mixing at the interface. Furthermore, coating failure under scratch test conditions was observed to take place via fracture within the silicon substrate itself, rather than either in the coating or at the film/substrate interface. © 2003 Elsevier B.V. All rights reserved.
Resumo:
Fracture owing to the coalescence of numerous microcracks can be described by a simple statistical model, where a coalescence event stochastically occurs as the number density of nucleated microcracks increases. Both numerical simulation and statistical analysis reveal that a microcrack coalescence process may display avalanche behavior and that the final failure is catastrophic. The cumulative distribution of coalescence events in the vicinity of critical fracture follows a power law and the fracture profile has self-affine fractal characteristic. Some macromechanical quantities may be traced back and extracted from the mesoscopic process based on the statistical analysis of coalescence events.
Resumo:
A systematic survey of the available data such as elastic constants, density, molar mass, and glass transition temperature of 45 metallic glasses is conducted. It is found that a critical strain controlling the onset of plastic deformation is material-independent. However, the correlation between elastic constants of solid glass and vitrification characteristics of its liquid does not follow a simple linear relation, and a characteristic volume, viz. molar volume, maybe relating to the characteristic size of a shear transformation zone (STZ), should be involved.
Resumo:
Superconducting Cu-rich composites containing the A-15 compounds V3Si or V3Ga have been made by the "Tsuei" process, which consists of melting the constituent elements into ingots followed by subsequent cold working and heat treatment. The superconducting transition temperatures of the resulting composites have been measured. X-ray diffraction analyses have been performed to identify the phases in the alloys. The microstructures have been studied using both the optical metallograph and the scanning electron-microscope. For some composites containing V3Ga, the critical current densities as functions of transverse magnetic field up to 60 kG, and as functions of temperature from 4.2°K to 12°K have been measured. It was found that the Tsuei process does not work for the composites containing V3Si, but works satisfactorily for the composites containing V3Ga. The reasons are discussed based on the results of microstructure studies, electrical resistivity measurements, and also the relevant binary phase diagrams. The relations between the measured properties and the various metallurgical factors such as the alloy compositions, the cross-section reduction ratios of the materials, and the heat treatment are discussed. The basic mechanism for the observed superconductivity in the materials is also discussed. In addition, it was found that the Tsuei composites are expected to have high inherent magneto-thermal stability based on the stability theory of superconducting composites.
Resumo:
The superconducting and magnetic properties of splat cooled amorphous alloys of composition (La100-xGdx)80Au20 (0 ≤ x ≤ 100) have been studied. The La80Au20 alloys are ideal type II super-conductors (critical temperature Tc = 3.5° K ). The concentration range (x less than 1) where superconductivity and spin-glass freezing n1ight coexist has been studied in detail. The spin-glass alloys (0 less than x less than 70) exhibit susceptibility maxima and thermomagnetic history effects. In the absence of complications due to crystal field and enhanced matrix effects, a phenomenological model is proposed in which the magnetic clusters are treated as single spin entities interacting via random forces using the molecular field approach. The fundamental parameters (such as the strength of the forces and the size of clusters) can be deduced from magnetization measurements. The remanent magnetization is shown to arise from an interplay of the RKKY and dipolar forces. Magnetoresistivity results are found to be consistent with the aforementioned picture. The nature of magnetic interactions in an amorphous matrix is also discussed. The moment per Gd atom (7µB) is found to be constant and close to that of the crystalline value throughout the concentration range investigated. Finally, a detail study is made of the critical phenomena and magnetic properties of the amorphous ferromagnet: Gd80Au20. The results are compared with recent theories on amorphous magnetism.