1000 resultados para continuous carbonization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The critical behaviour has been investigated in single crystalline Nd0.6Pb0.4MnO3 near the paramagnetic to ferromagnetic transition temperature (TC) by static magnetic measurements. The values of TC and the critical exponents β, γ and δ are estimated by analysing the data in the critical region. The exponent values are very close to those expected for 3D Heisenberg ferromagnets with short-range interactions. Specific heat measurements show a broad cusp at TC (i.e., exponent α<0) being consistent with Heisenberg-like behaviour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a hybrid synthetic protocol, the solvated metal atom dispersion (SMAD) method, for the synthesis and stabilization of monodisperse amorphous cobalt nanoparticles. By employing an optimized ratio of a weakly coordinating solvent and a capping agent monodisperse colloidal cobalt nanoparticles (2 +/- 0.5 nm) have been prepared by the SMAD method. However, the as-prepared samples were found to be oxidatively unstable which was elucidated by their magnetic studies. Oxidative stability in our case was achieved via a pyrolysis process that led to the decomposition of the organic solvent and the capping agent resulting in the formation of carbon encapsulated cobalt nanoparticles which was confirmed by Raman spectroscopy. Controlled annealing at different temperatures led to the phase transformation of metallic cobalt from the hcp to fcc phase. The magnetic behaviour varies with the phase and the particle size; especially, the coercivity of nanoparticles exhibited strong dependence on the phase transformation of cobalt. The high saturation magnetization close to that of the bulk value was achieved in the case of the annealed samples. In addition to detailed structural and morphological characterization, the results of thermal and magnetic studies are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate the launching of laser-cooled Yb atoms in a continuous atomic beam. The continuous cold beam has significant advantages over the more-common pulsed fountain, which was also demonstrated by us recently. The cold beam is formed in the following steps: i) atoms from a thermal beam are first Zeeman-slowed to a small final velocity; ii) the slowed atoms are captured in a two-dimensional magneto-optic trap (2D-MOT); and iii) atoms are launched continuously in the vertical direction using two sets of moving-molasses beams, inclined at +/- 15 degrees to the vertical. The cooling transition used is the strongly allowed S-1(0) -> P-1(1) transition at 399 nm. We capture about 7x10(6) atoms in the 2D-MOT, and then launch them with a vertical velocity of 13m/s at a longitudinal temperature of 125(6) mK. Copyright (C) EPLA, 2013

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Automatic and accurate detection of the closure-burst transition events of stops and affricates serves many applications in speech processing. A temporal measure named the plosion index is proposed to detect such events, which are characterized by an abrupt increase in energy. Using the maxima of the pitch-synchronous normalized cross correlation as an additional temporal feature, a rule-based algorithm is designed that aims at selecting only those events associated with the closure-burst transitions of stops and affricates. The performance of the algorithm, characterized by receiver operating characteristic curves and temporal accuracy, is evaluated using the labeled closure-burst transitions of stops and affricates of the entire TIMIT test and training databases. The robustness of the algorithm is studied with respect to global white and babble noise as well as local noise using the TIMIT test set and on telephone quality speech using the NTIMIT test set. For these experiments, the proposed algorithm, which does not require explicit statistical training and is based on two one-dimensional temporal measures, gives a performance comparable to or better than the state-of-the-art methods. In addition, to test the scalability, the algorithm is applied on the Buckeye conversational speech corpus and databases of two Indian languages. (C) 2014 Acoustical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study risk-sensitive control of continuous time Markov chains taking values in discrete state space. We study both finite and infinite horizon problems. In the finite horizon problem we characterize the value function via Hamilton Jacobi Bellman equation and obtain an optimal Markov control. We do the same for infinite horizon discounted cost case. In the infinite horizon average cost case we establish the existence of an optimal stationary control under certain Lyapunov condition. We also develop a policy iteration algorithm for finding an optimal control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes an automatic acoustic-phonetic method for estimating voice-onset time of stops. This method requires neither transcription of the utterance nor training of a classifier. It makes use of the plosion index for the automatic detection of burst onsets of stops. Having detected the burst onset, the onset of the voicing following the burst is detected using the epochal information and a temporal measure named the maximum weighted inner product. For validation, several experiments are carried out on the entire TIMIT database and two of the CMU Arctic corpora. The performance of the proposed method compares well with three state-of-the-art techniques. (C) 2014 Acoustical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a closed-form continuous model for the electrical conductivity of a single layer graphene (SLG) sheet in the presence of short-range impurities, long-range screened impurities, and acoustic phonons. The validity of the model extends from very low doping levels (chemical potential close to the Dirac cone vertex) to very high doping levels. We demonstrate complete functional relations of the chemical potential, polarization function, and conductivity with respect to both doping level and temperature (T), which were otherwise developed for SLG sheet only in the very low and very high doping levels. The advantage of the continuous conductivity model reported in this paper lies in its simple form which depends only on three adjustable parameters: the short-range impurity density, the long-range screened impurity density, and temperature T. The proposed theoretical model was successfully used to correlate various experiments in the midtemperature and moderate density regimes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly conducting composites were derived by selectively localizing multiwall carbon nanotubes (MWNTs) in co-continuous PVDF/ABS (50/50, wt/wt) blends. The electrical percolation threshold was obtained between 0.5 and 1 wt% MWNTs as manifested by a dramatic increase in the electrical conductivity by about six orders of magnitude with respect to the neat blends. In order to further enhance the electrical conductivity of the blends, the MWNTs were modified with amine terminated ionic liquid (IL), which, besides enhancing the interfacial interaction with PVDF, facilitated the formation of a network like structure of MWNTs. This high electrical conductivity of the blends, at a relatively low fraction (1 wt%), was further explored to design materials that can attenuate electromagnetic (EM) radiation. More specifically, to attenuate the EM radiation by absorption, a ferroelectric phase was introduced. To accomplish this, barium titanate (BT) nanoparticles chemically stitched onto graphene oxide (GO) sheets were synthesized and mixed along with MWNTs in the blends. Intriguingly, the total EM shielding effectiveness (SE) was enhanced by ca. 10 dB with respect to the blends with only MWNTs. In addition, the effect of introducing a ferromagnetic phase (Fe3O4) along with IL modified MWNTs was also investigated. This study opens new avenues in designing materials that can attenuate EM radiation by selecting either a ferroelectric (BT-GO) or a ferromagnetic phase (Fe3O4) along with intrinsically conducting nanoparticles (MWNTs).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the design of a new solar operated adsorption cooling system with two identical small and one large adsorber beds, which is capable of producing cold continuously, has been proposed. In this system, cold energy is stored in the form of refrigerant in a separate refrigerant storage tank at ambient temperature. Silica gel water is used as a working pair and system is driven by solar energy. The operating principle is described in details and its thermodynamic transient analysis is presented. Effect of COP and SCE for different adsorbent mass and adsorption/desorption time of smaller beds are discussed. Recommended mass and number of cycles of operation for smaller beds to attain continuous cooling with average COP and SCE of 0.63 and 337.5 kJ/kg, respectively are also discussed, at a generation, condenser and evaporator temperatures of 368 K, 303 K and 283 K, respectively. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate in here a powerful scalable technology to synthesize continuously high quality CdSe quantum dots (QDs) in supercritical hexane. Using a low cost, highly thermally stable Cd-precursor, cadmium deoxycholate, the continuous synthesis is performed in 400 mu m ID stainless steel capillaries resulting in CdSe QDs having sharp full-width-at-half-maxima (23 nm) and high photoluminescence quantum yields (45-55%). Transmission electron microscopy images show narrow particles sizes distribution (sigma <= 5%) with well-defined crystal lattices. Using two different synthesis temperatures (250 degrees C and 310 degrees C), it was possible to obtain zinc blende and wurtzite crystal structures of CdSe QDs, respectively. This synthetic approach allows achieving substantial production rates up to 200 mg of QDs per hour depending on the targeted size, and could be easily scaled to gram per hour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we study risk-sensitive control problem with controlled continuous time Markov chain state dynamics. Using multiplicative dynamic programming principle along with the atomic structure of the state dynamics, we prove the existence and a characterization of optimal risk-sensitive control under geometric ergodicity of the state dynamics along with a smallness condition on the running cost.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current day networks use Proactive networks for adaption to the dynamic scenarios. The use of cognition technique based on the Observe, Orient, Decide and Act loop (OODA) is proposed to construct proactive networks. The network performance degradation in knowledge acquisition and malicious node presence is a problem that exists. The use of continuous time dynamic neural network is considered to achieve cognition. The variance in service rates of user nodes is used to detect malicious activity in heterogeneous networks. The improved malicious node detection rates are proved through the experimental results presented in this paper. (C) 2015 The Authors. Published by Elsevier B.V.