988 resultados para context processing
Resumo:
Investigates multiple processing parameters, includingpolymer type, filler type, processing technique, severity of SSSP (Solid-state shear pulverization)processing, and postprocessing, of SSSP. HDPE and LLDPE polymers with pristine clay and organo-clay samples are explored. Effects on crystallization, high-temperature behavior, mechanicalproperties, and gas barrier properties are examined. Thermal, mechanical, and morphological characterization is conducted to determine polymer/filler compatibility and superior processing methods for the polymer-clay nanocomposites.
Resumo:
Biodegradable nanoparticles are at the forefront of drug delivery research as they provide numerous advantages over traditional drug delivery methods. An important factor affecting the ability of nanoparticles to circulate within the blood stream and interact with cells is their morphology. In this study a novel processing method, confined impinging jet mixing, was used to form poly (lactic acid) nanoparticles through a solvent-diffusion process with Pluronic F-127 being used as a stabilizing agent. This study focused on the effects of Reynolds number (flow rate), surfactant presence in mixing, and polymer concentration on the morphology of poly (lactic acid) nanoparticles. In addition to looking at the parameters affecting poly (lactic acid) morphology, this study attempted to improve nanoparticle isolation and purification methods to increase nanoparticle yield and ensure specific morphologies were not being excluded during isolation and purification. The isolation and purification methods used in this study were centrifugation and a stir cell. This study successfully produced particles having pyramidal and cubic morphologies. Despite successful production of these morphologies the yield of non-spherical particles was very low, additionally great variability existed between redundant trails. Surfactant was determined to be very important for the stabilization of nanoparticles in solution but appears to be unnecessary for the formation of nanoparticles. Isolation and purification methods that produce a high yield of surfactant free particles have still not been perfected and additional testing will be necessary for improvement.¿
Resumo:
This thesis presents two frameworks- a software framework and a hardware core manager framework- which, together, can be used to develop a processing platform using a distributed system of field-programmable gate array (FPGA) boards. The software framework providesusers with the ability to easily develop applications that exploit the processing power of FPGAs while the hardware core manager framework gives users the ability to configure and interact with multiple FPGA boards and/or hardware cores. This thesis describes the design and development of these frameworks and analyzes the performance of a system that was constructed using the frameworks. The performance analysis included measuring the effect of incorporating additional hardware components into the system and comparing the system to a software-only implementation. This work draws conclusions based on the provided results of the performance analysis and offers suggestions for future work.
Resumo:
Biodegradable polymer/clay nanocomposites were prepared withpristine and organically modified montmorillonite in polylactic acid (PLA) and polycaprolactone (PCL) polymer matrices. Nanocomposites were fabricated using extrusion and SSSP to compare the effects of melt-state and solid-state processing on the morphology of the final nanocomposite. Characterization of various material properties was performed on prepared biodegradable polymer/clay nanocomposites to evaluate property enhancements from different clays and/or processing methods.
Resumo:
Successful software systems cope with complexity by organizing classes into packages. However, a particular organization may be neither straightforward nor obvious for a given developer. As a consequence, classes can be misplaced, leading to duplicated code and ripple effects with minor changes effecting multiple packages. We claim that contextual information is the key to rearchitecture a system. Exploiting contextual information, we propose a technique to detect misplaced classes by analyzing how client packages access the classes of a given provider package. We define locality as a measure of the degree to which classes reused by common clients appear in the same package. We then use locality to guide a simulated annealing algorithm to obtain optimal placements of classes in packages. The result is the identification of classes that are candidates for relocation. We apply the technique to three applications and validate the usefulness of our approach via developer interviews.
Resumo:
Nitrogen (N) saturation is an environmental concern for forests in the eastern U.S. Although several watersheds of the Fernow Experimental Forest (FEF), West Virginia exhibit symptoms of Nsaturation, many watersheds display a high degree of spatial variability in soil N processing. This study examined the effects of temperature on net N mineralization and nitrification in N-saturatedsoils from FEF, and how these effects varied between high N-processing vs. low N-processingsoils collected from two watersheds, WS3 (fertilized with [NH4]2SO4) and WS4 (untreated control). Samples of forest floor material (O2 horizon) and mineral soil (to a 5-cm depth) were taken from three subplots within each of four plots that represented the extremes of highest and lowest ratesof net N mineralization and nitrification (hereafter, high N and low N, respectively) of untreated WS4 and N-treated WS3: control/low N, control/high N, N-treated/low N, N-treated/high N. Forest floor material was analyzed for carbon (C), lignin,and N. Subsamples of mineral soil were extractedimmediately with 1 N KCl and analyzed for NH4+and NO3– to determine preincubation levels. Extracts were also analyzed for Mg, Ca, Al, and pH. To test the hypothesis that the lack of net nitrification observed in field incubations on the untreated/low N plot was the result of absence ofnitrifier populations, we characterized the bacterial community involved in N cycling by amplification of amoA genes. Remaining soil was incubated for 28 d at three temperatures (10, 20, and30°C), followed by 1 N KCl extraction and analysis for NH4+ and NO3–. Net nitrification was essentially 100% of net N mineralization for all samples combined. Nitrification rates from lab incubation sat all temperatures supported earlier observations based on field incubations. At 30°C, rates from N- t reated/high N were three times those of N-treated/low N. Highest rates were found for untreated/high N (two times greater than those of N-treated/high N), whereas untreated/low N exhibited no net nitrification. However, soils exhibitingno net nitrification tested positive for presence of nitrifying bacteria, causing us to reject our initial hypothesis. We hypothesize that nitrifier populations in such soil are being inhibited by a combination of low Ca:Al ratios in mineral soil and allelopathic interactions with mycorrhizae of ericaceous species in the herbaceous layer.
Resumo:
Behavioral studies suggest that women and men differ in the strategic elaboration of verbally encoded information especially in the absence of external task demand. However, measuring such covert processing requires other than behavioral data. The present study used event-related potentials to compare sexes in lower and higher order semantic processing during the passive reading of semantically related and unrelated word pairs. Women and men showed the same early context effect in the P1-N1 transition period. This finding indicates that the initial lexical-semantic access is similar in men and women. In contrast, sexes differed in higher order semantic processing. Women showed an earlier and longer lasting context effect in the N400 accompanied by larger signal strength in temporal networks similarly recruited by men and women. The results suggest that women spontaneously conduct a deeper semantic analysis. This leads to faster processing of related words in the active neural networks as reflected in a shorter stability of the N400 map in women. Taken together, the findings demonstrate that there is a selective sex difference in the controlled semantic analysis during passive word reading that is not reflected in different functional organization but in the depth of processing.
Resumo:
Inexpensive, commercial available off-the-shelf (COTS) Global Positioning Receivers (GPS) have typical accuracy of ±3 meters when augmented by the Wide Areas Augmentation System (WAAS). There exist applications that require position measurements between two moving targets. The focus of this work is to explore the viability of using clusters of COTS GPS receivers for relative position measurements to improve their accuracy. An experimental study was performed using two clusters, each with five GPS receivers, with a fixed distance of 4.5 m between the clusters. Although the relative position was fixed, the entire system of ten GPS receivers was on a mobile platform. Data was recorded while moving the system over a rectangular track with a perimeter distance of 7564 m. The data was post processed and yielded approximately 1 meter accuracy for the relative position vector between the two clusters.
Resumo:
A series of aluminum alloys containing additions of scandium, zirconium, and ytterbium were cast to evaluate the effect of partial ytterbium substitution for scandium on tensile behavior. Due to the high price of scandium, a crucible-melt interaction study was performed to ensure no scandium was lost in graphite, alumina, magnesia, or zirconia crucibles after holding a liquid Al-Sc master alloy for 8 hours at 900 °C in an argon atmosphere. The alloys were subjected to an isochronal aging treatment and tested for conductivity and Vickers microhardness after each increment. For scandium-containing alloys, peak hardnesses of 520-790 MPa, and peak tensile stresses of 138-234 MPa were observed after aging from 150-350 °C for 3 hours in increments of 50 °C, and for alloys without scandium, peak hardnesses of 217-335 MPa and peak tensile stresses of 45-63 MPa were observed after a 3 hour, 150 °C aging treatment. The hardness and tensile strength of the ytterbium containing alloy was found to be lower than in the alloy with no ytterbium substitution.
Resumo:
Sustainable yields from water wells in hard-rock aquifers are achieved when the well bore intersects fracture networks. Fracture networks are often not readily discernable at the surface. Lineament analysis using remotely sensed satellite imagery has been employed to identify surface expressions of fracturing, and a variety of image-analysis techniques have been successfully applied in “ideal” settings. An ideal setting for lineament detection is where the influences of human development, vegetation, and climatic situations are minimal and hydrogeological conditions and geologic structure are known. There is not yet a well-accepted protocol for mapping lineaments nor have different approaches been compared in non-ideal settings. A new approach for image-processing/synthesis was developed to identify successful satellite imagery types for lineament analysis in non-ideal terrain. Four satellite sensors (ASTER, Landsat7 ETM+, QuickBird, RADARSAT-1) and a digital elevation model were evaluated for lineament analysis in Boaco, Nicaragua, where the landscape is subject to varied vegetative cover, a plethora of anthropogenic features, and frequent cloud cover that limit the availability of optical satellite data. A variety of digital image processing techniques were employed and lineament interpretations were performed to obtain 12 complementary image products that were evaluated subjectively to identify lineaments. The 12 lineament interpretations were synthesized to create a raster image of lineament zone coincidence that shows the level of agreement among the 12 interpretations. A composite lineament interpretation was made using the coincidence raster to restrict lineament observations to areas where multiple interpretations (at least 4) agree. Nine of the 11 previously mapped faults were identified from the coincidence raster. An additional 26 lineaments were identified from the coincidence raster, and the locations of 10 were confirmed by field observation. Four manual pumping tests suggest that well productivity is higher for wells proximal to lineament features. Interpretations from RADARSAT-1 products were superior to interpretations from other sensor products, suggesting that quality lineament interpretation in this region requires anthropogenic features to be minimized and topographic expressions to be maximized. The approach developed in this study has the potential to improve siting wells in non-ideal regions.
Processing and characterization of PbSnTe-based thermoelectric materials made by mechanical alloying
Resumo:
The research reported in this dissertation investigates the processes required to mechanically alloy Pb1-xSnxTe and AgSbTe2 and a method of combining these two end compounds to result in (y)(AgSbTe2)–(1 - y)(Pb1-xSnxTe) thermoelectric materials for power generation applications. In general, traditional melt processing of these alloys has employed high purity materials that are subjected to time and energy intensive processes that result in highly functional material that is not easily reproducible. This research reports the development of mechanical alloying processes using commercially available 99.9% pure elemental powders in order to provide a basis for the economical production of highly functional thermoelectric materials. Though there have been reports of high and low ZT materials fabricated by both melt alloying and mechanical alloying, the processing-structure-properties-performance relationship connecting how the material is made to its resulting functionality is poorly understood. This is particularly true for mechanically alloyed material, motivating an effort to investigate bulk material within the (y)(AgSbTe2)–(1 - y)(Pb1-xSnx- Te) system using the mechanical alloying method. This research adds to the body of knowledge concerning the way in which mechanical alloying can be used to efficiently produce high ZT thermoelectric materials. The processes required to mechanically alloy elemental powders to form Pb1-xSnxTe and AgSbTe2 and to subsequently consolidate the alloyed powder is described. The composition, phases present in the alloy, volume percent, size and spacing of the phases are reported. The room temperature electronic transport properties of electrical conductivity, carrier concentration and carrier mobility are reported for each alloy and the effect of the presence of any secondary phase on the electronic transport properties is described. An mechanical mixing approach for incorporating the end compounds to result in (y)(AgSbTe2)–(1-y)(Pb1-xSnxTe) is described and when 5 vol.% AgSbTe2 was incorporated was found to form a solid solution with the Pb1-xSnxTe phase. An initial attempt to change the carrier concentration of the Pb1-xSnxTe phase was made by adding excess Te and found that the carrier density of the alloys in this work are not sensitive to excess Te. It has been demonstrated using the processing techniques reported in this research that this material system, when appropriately doped, has the potential to perform as highly functional thermoelectric material.
Resumo:
Thermal stability of nanograined metals can be difficult to attain due to the large driving force for grain growth that arises from the significant boundary area constituted by the nanostructure. Kinetic approaches for stabilization of the nanostructure effective at low homologous temperatures often fail at higher homologous temperatures. Thermodynamic approaches for thermal stabilization may offer higher temperature stability. In this research, modest alloying of aluminum with solute (1 at.% Sc, Yb, or Sr) was examined as a means to thermodynamically stabilize a bulk nanostructure at elevated temperatures. After using melt-spinning and ball-milling to create an extended solid-solution and nanostructure with average grain size on the order of 30-45 nm, 1 h annealing treatments at 673 K (0.72 Tm) , 773 K (0.83 Tm) , and 873 K (0.94 Tm) were applied. The alloys remain nanocrystalline (<100 nm) as measured by Warren-Averbach Fourier analysis of x-ray diffraction peaks and direct observation of TEM dark field micrographs, with the efficacy of stabilization: Sr>Yb>Sc. Disappearance of intermetallic phases in the Sr and Yb alloys in the x-ray diffraction spectra are observed to occur coincident with the stabilization after annealing, suggesting that precipitates dissolve and the boundaries are enriched with solute. Melt-spinning has also been shown to be an effective process to produce a class of ordered, but non-periodic crystals called quasicrystals. However, many of the factors related to the creation of the quasicrystals through melt-spinning are not optimized for specific chemistries and alloy systems. In a related but separate aspect of this research, meltspinning was utilized to create metastable quasicrystalline Al6Mn in an α-Al matrix through rapid solidification of Al-8Mn (by mol) and Al-10Mn (by mol) alloys. Wheel speed of the melt-spinning wheel and orifice diameter of the tube reservoir were varied to determine their effect on the resulting volume proportions of the resultant phases using integrated areas of collected x-ray diffraction spectra. The data were then used to extrapolate parameters for the Al-10Mn alloy which consistently produced Al6Mn quasicrystal with almost complete suppression of the equilibrium Al6Mn orthorhombic phase.
Resumo:
Quantifying belowground dynamics is critical to our understanding of plant and ecosystem function and belowground carbon cycling, yet currently available tools for complex belowground image analyses are insufficient. We introduce novel techniques combining digital image processing tools and geographic information systems (GIS) analysis to permit semi-automated analysis of complex root and soil dynamics. We illustrate methodologies with imagery from microcosms, minirhizotrons, and a rhizotron, in upland and peatland soils. We provide guidelines for correct image capture, a method that automatically stitches together numerous minirhizotron images into one seamless image, and image analysis using image segmentation and classification in SPRING or change analysis in ArcMap. These methods facilitate spatial and temporal root and soil interaction studies, providing a framework to expand a more comprehensive understanding of belowground dynamics.
Resumo:
The performance of memory-guided saccades with two different delays (3 s and 30 s of memorisation) was studied in eight subjects. Single pulse transcranial magnetic stimulation (TMS) was applied simultaneously over the left and right dorsolateral prefrontal cortex (DLPFC) 1 s after target presentation. In both delays, stimulation significantly increased the percentage of error in amplitude of memory-guided saccades. Furthermore, the interfering effect of TMS was significantly higher in the short delay compared to that of the long delay paradigm. The results are discussed in the context of a mixed model of spatial working memory control including two components: First, serial information processing with a predominant role of the DLPFC during the early period of memorisation and, second, parallel information processing, which is independent from the DLPFC, operating during longer delays.
Resumo:
In recent years, advanced metering infrastructure (AMI) has been the main research focus due to the traditional power grid has been restricted to meet development requirements. There has been an ongoing effort to increase the number of AMI devices that provide real-time data readings to improve system observability. Deployed AMI across distribution secondary networks provides load and consumption information for individual households which can improve grid management. Significant upgrade costs associated with retrofitting existing meters with network-capable sensing can be made more economical by using image processing methods to extract usage information from images of the existing meters. This thesis presents a new solution that uses online data exchange of power consumption information to a cloud server without modifying the existing electromechanical analog meters. In this framework, application of a systematic approach to extract energy data from images replaces the manual reading process. One case study illustrates the digital imaging approach is compared to the averages determined by visual readings over a one-month period.