964 resultados para construction applications
Resumo:
Réalisé en cotutelle avec Aix Marseille Université.
Resumo:
As a result of the drive towards waste-poor world and reserving the non-renewable materials, recycling the construction and demolition materials become very essential. Now reuse of the recycled concrete aggregate more than 4 mm in producing new concrete is allowed but with natural sand a fine aggregate while. While the sand portion that represent about 30\% to 60\% of the crushed demolition materials is disposed off. To perform this research, recycled concrete sand was produced in the laboratory while nine recycled sands produced from construction and demolitions materials and two sands from natural crushed limestone were delivered from three plants. Ten concrete mix designs representing the concrete exposition classes XC1, XC2, XF3 and XF4 according to European standard EN 206 were produced with partial and full replacement of natural sand by the different recycled sands. Bituminous mixtures achieving the requirements of base courses according to Germany standards and both base and binder courses according to Egyptian standards were produced with the recycled sands as a substitution to the natural sands. The mechanical properties and durability of concrete produced with the different recycled sands were investigated and analyzed. Also the volumetric analysis and Marshall test were performed hot bituminous mixtures produced with the recycled sands. According to the effect of replacement the natural sand by the different recycled sands on the concrete compressive strength and durability, the recycled sands were classified into three groups. The maximum allowable recycled sand that can be used in the different concrete exposition class was determined for each group. For the asphalt concrete mixes all the investigated recycled sands can be used in mixes for base and binder courses up to 21\% of the total aggregate mass.
Resumo:
Construction materials and equipment are essential building blocks of every construction project and may account for 50-60 per cent of the total cost of construction. The rate of their utilization, on the other hand, is the element that most directly relates to a project progress. A growing concern in the industry that inadequate efficiency hinders its success could thus be accommodated by turning construction into a logistic process. Although mostly limited, recent attempts and studies show that Radio Frequency IDentification (RFID) applications have significant potentials in construction. However, the aim of this research is to show that the technology itself should not only be used for automation and tracking to overcome the supply chain complexity but also as a tool to generate, record and exchange process-related knowledge among the supply chain stakeholders. This would enable all involved parties to identify and understand consequences of any forthcoming difficulties and react accordingly before they cause major disruptions in the construction process. In order to achieve this aim the study focuses on a number of methods. First of all it develops a generic understanding of how RFID technology has been used in logistic processes in industrial supply chain management. Secondly, it investigates recent applications of RFID as an information and communication technology support facility in construction logistics for the management of construction supply chain. Based on these the study develops an improved concept of a construction logistics architecture that explicitly relies on integrating RFID with the Global Positioning System (GPS). The developed conceptual model architecture shows that categorisation provided through RFID and traceability as a result of RFID/GPS integration could be used as a tool to identify, record and share potential problems and thus vastly improve knowledge management processes within the entire supply chain. The findings thus clearly show a need for future research in this area.
Resumo:
Because of the importance and potential usefulness of construction market statistics to firms and government, consistency between different sources of data is examined with a view to building a predictive model of construction output using construction data alone. However, a comparison of Department of Trade and Industry (DTI) and Office for National Statistics (ONS) series shows that the correlation coefcient (used as a measure of consistency) of the DTI output and DTI orders data and the correlation coefficient of the DTI output and ONS output data are low. It is not possible to derive a predictive model of DTI output based on DTI orders data alone. The question arises whether or not an alternative independent source of data may be used to predict DTI output data. Independent data produced by Emap Glenigan (EG), based on planning applications, potentially offers such a source of information. The EG data records the value of planning applications and their planned start and finish dates. However, as this data is ex ante and is not correlated with DTI output it is not possible to use this data to describe the volume of actual construction output. Nor is it possible to use the EG planning data to predict DTI construc-tion orders data. Further consideration of the issues raised reveal that it is not practically possible to develop a consistent predictive model of construction output using construction statistics gathered at different stages in the development process.
Resumo:
The construction industry has incurred a considerable amount of waste as a result of poor logistics supply chain network management. Therefore, managing logistics in the construction industry is critical. An effective logistic system ensures delivery of the right products and services to the right players at the right time while minimising costs and rewarding all sectors based on value added to the supply chain. This paper reports on an on-going research study on the concept of context-aware services delivery in the construction project supply chain logistics. As part of the emerging wireless technologies, an Intelligent Wireless Web (IWW) using context-aware computing capability represents the next generation ICT application to construction-logistics management. This intelligent system has the potential of serving and improving the construction logistics through access to context-specific data, information and services. Existing mobile communication deployments in the construction industry rely on static modes of information delivery and do not take into account the worker’s changing context and dynamic project conditions. The major problems in these applications are lack of context-specificity in the distribution of information, services and other project resources, and lack of cohesion with the existing desktop based ICT infrastructure. The research works focus on identifying the context dimension such as user context, environmental context and project context, selection of technologies to capture context-parameters such wireless sensors and RFID, selection of supporting technologies such as wireless communication, Semantic Web, Web Services, agents, etc. The process of integration of Context-Aware Computing and Web-Services to facilitate the creation of intelligent collaboration environment for managing construction logistics will take into account all the necessary critical parameters such as storage, transportation, distribution, assembly, etc. within off and on-site project.
Resumo:
This paper presents a novel actuator design that ameliorates or eliminates the effects of non-linearities that are characteristically present in geared actuator systems and which are very problematic for low velocity applications. The design centres on the providing an internal rotational element within a single actuator to ensure operation of actuator away from the stiction region, whilst allowing zero velocity external output of the actuator. The construction has the added advantage of substantially reducing backlash. The prototype comprises two commercially available servo-actuators to test the principle of operation and results presented indicate that the concept is worth exploring further.
Resumo:
A construction algorithm for multioutput radial basis function (RBF) network modelling is introduced by combining a locally regularised orthogonal least squares (LROLS) model selection with a D-optimality experimental design. The proposed algorithm aims to achieve maximised model robustness and sparsity via two effective and complementary approaches. The LROLS method alone is capable of producing a very parsimonious RBF network model with excellent generalisation performance. The D-optimality design criterion enhances the model efficiency and robustness. A further advantage of the combined approach is that the user only needs to specify a weighting for the D-optimality cost in the combined RBF model selecting criterion and the entire model construction procedure becomes automatic. The value of this weighting does not influence the model selection procedure critically and it can be chosen with ease from a wide range of values.
Resumo:
An orthogonal forward selection (OFS) algorithm based on leave-one-out (LOO) criteria is proposed for the construction of radial basis function (RBF) networks with tunable nodes. Each stage of the construction process determines an RBF node, namely, its center vector and diagonal covariance matrix, by minimizing the LOO statistics. For regression application, the LOO criterion is chosen to be the LOO mean-square error, while the LOO misclassification rate is adopted in two-class classification application. This OFS-LOO algorithm is computationally efficient, and it is capable of constructing parsimonious RBF networks that generalize well. Moreover, the proposed algorithm is fully automatic, and the user does not need to specify a termination criterion for the construction process. The effectiveness of the proposed RBF network construction procedure is demonstrated using examples taken from both regression and classification applications.
Resumo:
An automatic nonlinear predictive model-construction algorithm is introduced based on forward regression and the predicted-residual-sums-of-squares (PRESS) statistic. The proposed algorithm is based on the fundamental concept of evaluating a model's generalisation capability through crossvalidation. This is achieved by using the PRESS statistic as a cost function to optimise model structure. In particular, the proposed algorithm is developed with the aim of achieving computational efficiency, such that the computational effort, which would usually be extensive in the computation of the PRESS statistic, is reduced or minimised. The computation of PRESS is simplified by avoiding a matrix inversion through the use of the orthogonalisation procedure inherent in forward regression, and is further reduced significantly by the introduction of a forward-recursive formula. Based on the properties of the PRESS statistic, the proposed algorithm can achieve a fully automated procedure without resort to any other validation data set for iterative model evaluation. Numerical examples are used to demonstrate the efficacy of the algorithm.
Resumo:
This paper introduces a new fast, effective and practical model structure construction algorithm for a mixture of experts network system utilising only process data. The algorithm is based on a novel forward constrained regression procedure. Given a full set of the experts as potential model bases, the structure construction algorithm, formed on the forward constrained regression procedure, selects the most significant model base one by one so as to minimise the overall system approximation error at each iteration, while the gate parameters in the mixture of experts network system are accordingly adjusted so as to satisfy the convex constraints required in the derivation of the forward constrained regression procedure. The procedure continues until a proper system model is constructed that utilises some or all of the experts. A pruning algorithm of the consequent mixture of experts network system is also derived to generate an overall parsimonious construction algorithm. Numerical examples are provided to demonstrate the effectiveness of the new algorithms. The mixture of experts network framework can be applied to a wide variety of applications ranging from multiple model controller synthesis to multi-sensor data fusion.
Resumo:
A connection between a fuzzy neural network model with the mixture of experts network (MEN) modelling approach is established. Based on this linkage, two new neuro-fuzzy MEN construction algorithms are proposed to overcome the curse of dimensionality that is inherent in the majority of associative memory networks and/or other rule based systems. The first construction algorithm employs a function selection manager module in an MEN system. The second construction algorithm is based on a new parallel learning algorithm in which each model rule is trained independently, for which the parameter convergence property of the new learning method is established. As with the first approach, an expert selection criterion is utilised in this algorithm. These two construction methods are equivalent in their effectiveness in overcoming the curse of dimensionality by reducing the dimensionality of the regression vector, but the latter has the additional computational advantage of parallel processing. The proposed algorithms are analysed for effectiveness followed by numerical examples to illustrate their efficacy for some difficult data based modelling problems.
Resumo:
A common problem in many data based modelling algorithms such as associative memory networks is the problem of the curse of dimensionality. In this paper, a new two-stage neurofuzzy system design and construction algorithm (NeuDeC) for nonlinear dynamical processes is introduced to effectively tackle this problem. A new simple preprocessing method is initially derived and applied to reduce the rule base, followed by a fine model detection process based on the reduced rule set by using forward orthogonal least squares model structure detection. In both stages, new A-optimality experimental design-based criteria we used. In the preprocessing stage, a lower bound of the A-optimality design criterion is derived and applied as a subset selection metric, but in the later stage, the A-optimality design criterion is incorporated into a new composite cost function that minimises model prediction error as well as penalises the model parameter variance. The utilisation of NeuDeC leads to unbiased model parameters with low parameter variance and the additional benefit of a parsimonious model structure. Numerical examples are included to demonstrate the effectiveness of this new modelling approach for high dimensional inputs.
Resumo:
Neurofuzzy modelling systems combine fuzzy logic with quantitative artificial neural networks via a concept of fuzzification by using a fuzzy membership function usually based on B-splines and algebraic operators for inference, etc. The paper introduces a neurofuzzy model construction algorithm using Bezier-Bernstein polynomial functions as basis functions. The new network maintains most of the properties of the B-spline expansion based neurofuzzy system, such as the non-negativity of the basis functions, and unity of support but with the additional advantages of structural parsimony and Delaunay input space partitioning, avoiding the inherent computational problems of lattice networks. This new modelling network is based on the idea that an input vector can be mapped into barycentric co-ordinates with respect to a set of predetermined knots as vertices of a polygon (a set of tiled Delaunay triangles) over the input space. The network is expressed as the Bezier-Bernstein polynomial function of barycentric co-ordinates of the input vector. An inverse de Casteljau procedure using backpropagation is developed to obtain the input vector's barycentric co-ordinates that form the basis functions. Extension of the Bezier-Bernstein neurofuzzy algorithm to n-dimensional inputs is discussed followed by numerical examples to demonstrate the effectiveness of this new data based modelling approach.