957 resultados para conditional random field
Resumo:
Both commercial and scientific applications often need to transform color images into gray-scale images, e. g., to reduce the publication cost in printing color images or to help color blind people see visual cues of color images. However, conventional color to gray algorithms are not ready for practical applications because they encounter the following problems: 1) Visual cues are not well defined so it is unclear how to preserve important cues in the transformed gray-scale images; 2) some algorithms have extremely high time cost for computation; and 3) some require human-computer interactions to have a reasonable transformation. To solve or at least reduce these problems, we propose a new algorithm based on a probabilistic graphical model with the assumption that the image is defined over a Markov random field. Thus, color to gray procedure can be regarded as a labeling process to preserve the newly well-defined visual cues of a color image in the transformed gray-scale image. Visual cues are measurements that can be extracted from a color image by a perceiver. They indicate the state of some properties of the image that the perceiver is interested in perceiving. Different people may perceive different cues from the same color image and three cues are defined in this paper, namely, color spatial consistency, image structure information, and color channel perception priority. We cast color to gray as a visual cue preservation procedure based on a probabilistic graphical model and optimize the model based on an integral minimization problem. We apply the new algorithm to both natural color images and artificial pictures, and demonstrate that the proposed approach outperforms representative conventional algorithms in terms of effectiveness and efficiency. In addition, it requires no human-computer interactions.
Resumo:
本文针对基于马尔可夫随机场模型(MRF)的图像分割技术进行研究,通过深入分析马尔可夫随机场模型用于图像分割时的优缺点,提出了改进方案,将其用于单帧图像的无监督分割和动态场景下的运动目标分割。主要研究内容包括以下几部分。 第一部分详细介绍了马尔可夫随机场模型,包括邻域系统和基团的概念、初始标记场的获取、能量函数的确立和MAP估算方法。 第二部分针对噪声图像的预处理,提出一种多尺度双边滤波算法来综合不同尺度下双边滤波的去噪效果。为降低双边滤波的计算复杂性,提出一种双边滤波快速计算方法。该算法能够在去除噪声的同时较好地保留边缘。 第三部分针对MRF模型用于图像分割中遇到的过平滑问题,定义了一种间断自适应高斯马尔可夫随机场模型(DA-GMRF),提出一种基于该模型的无监督图像分割方法。利用灰度直方图势函数自动确定分类数及分割阈值,进行多阈值分割得到标记场的初始化,用Metroplis采样器算法进行标记场的优化,得到最终的分割结果。该方法考虑了平滑约束在图像边缘处的自适应性,避免了边缘处的过平滑,将其应用于无监督图像分割取得了较好的效果。 第四部分针对动态场景下的运动目标分割,提出一种基于间断自适应时空马尔可夫随机场模型的运动目标分割方法。解决了传统时空马尔可夫随机场模型不能对运动造成的显露遮挡现象进行处理问题,也克服了全局一致平滑假设造成的过平滑问题。帧差图像二值化得到初始标记场,初始标记场进行‘与’操作获得共同标记场,用Metroplis采样器算法实现共同标记场的优化。该方法既使用了平滑约束,而又保留了间断,从而使分割得到的运动目标边缘更加准确。
Resumo:
The seismic survey is the most effective geophysical method during exploration and development of oil/gas. As a main means in processing and interpreting seismic data, impedance inversion takes up a special position in seismic survey. This is because the impedance parameter is a ligament which connects seismic data with well-logging and geological information, while it is also essential in predicting reservoir properties and sand-body. In fact, the result of traditional impedance inversion is not ideal. This is because the mathematical inverse problem of impedance is poor-pose so that the inverse result has instability and multi-result, so it is necessary to introduce regularization. Most simple regularizations are presented in existent literature, there is a premise that the image(or model) is globally smooth. In fact, as an actual geological model, it not only has made of smooth region but also be separated by the obvious edge, the edge is very important attribute of geological model. It's difficult to preserve these characteristics of the model and to avoid an edge too smooth to clear. Thereby, in this paper, we propose a impedance inverse method controlled by hyperparameters with edge-preserving regularization, the inverse convergence speed and result would be improved. In order to preserve the edge, the potential function of regularization should satisfy nine conditions such as basic assumptions edge preservation and convergence assumptions etc. Eventually, a model with clear background and edge-abnormity can be acquired. The several potential functions and the corresponding weight functions are presented in this paper. The potential functionφLφHL andφGM can meet the need of inverse precision by calculating the models. For the local constant planar and quadric models, we respectively present the neighborhood system of Markov random field corresponding to the regularization term. We linearity nonlinear regularization by using half-quadratic regularization, it not only preserve the edge, and but also simplify the inversion, and can use some linear methods. We introduced two regularization parameters (or hyperparameters) λ2 and δ in the regularization term. λ2 is used to balance the influence between the data term and the transcendental term; δ is a calibrating parameter used to adjust the gradient value at the discontinuous position(or formation interface). Meanwhile, in the inverse procedure, it is important to select the initial value of hyperparameters and to change hyperparameters, these will then have influence on convergence speed and inverse effect. In this paper, we roughly give the initial value of hyperparameters by using a trend- curve of φ-(λ2, δ) and by a method of calculating the upper limit value of hyperparameters. At one time, we change hyperparameters by using a certain coefficient or Maximum Likelihood method, this can be simultaneously fulfilled with the inverse procedure. Actually, we used the Fast Simulated Annealing algorithm in the inverse procedure. This method overcame restrictions from the local extremum without depending on the initial value, and got a global optimal result. Meanwhile, we expound in detail the convergence condition of FSA, the metropolis receiving probability form Metropolis-Hasting, the thermal procession based on the Gibbs sample and other methods integrated with FSA. These content can help us to understand and improve FSA. Through calculating in the theoretic model and applying it to the field data, it is proved that the impedance inverse method in this paper has the advantage of high precision practicability and obvious effect.
Resumo:
This memo describes the initial results of a project to create a self-supervised algorithm for learning object segmentation from video data. Developmental psychology and computational experience have demonstrated that the motion segmentation of objects is a simpler, more primitive process than the detection of object boundaries by static image cues. Therefore, motion information provides a plausible supervision signal for learning the static boundary detection task and for evaluating performance on a test set. A video camera and previously developed background subtraction algorithms can automatically produce a large database of motion-segmented images for minimal cost. The purpose of this work is to use the information in such a database to learn how to detect the object boundaries in novel images using static information, such as color, texture, and shape. This work was funded in part by the Office of Naval Research contract #N00014-00-1-0298, in part by the Singapore-MIT Alliance agreement of 11/6/98, and in part by a National Science Foundation Graduate Student Fellowship.
Resumo:
BACKGROUND:In the current climate of high-throughput computational biology, the inference of a protein's function from related measurements, such as protein-protein interaction relations, has become a canonical task. Most existing technologies pursue this task as a classification problem, on a term-by-term basis, for each term in a database, such as the Gene Ontology (GO) database, a popular rigorous vocabulary for biological functions. However, ontology structures are essentially hierarchies, with certain top to bottom annotation rules which protein function predictions should in principle follow. Currently, the most common approach to imposing these hierarchical constraints on network-based classifiers is through the use of transitive closure to predictions.RESULTS:We propose a probabilistic framework to integrate information in relational data, in the form of a protein-protein interaction network, and a hierarchically structured database of terms, in the form of the GO database, for the purpose of protein function prediction. At the heart of our framework is a factorization of local neighborhood information in the protein-protein interaction network across successive ancestral terms in the GO hierarchy. We introduce a classifier within this framework, with computationally efficient implementation, that produces GO-term predictions that naturally obey a hierarchical 'true-path' consistency from root to leaves, without the need for further post-processing.CONCLUSION:A cross-validation study, using data from the yeast Saccharomyces cerevisiae, shows our method offers substantial improvements over both standard 'guilt-by-association' (i.e., Nearest-Neighbor) and more refined Markov random field methods, whether in their original form or when post-processed to artificially impose 'true-path' consistency. Further analysis of the results indicates that these improvements are associated with increased predictive capabilities (i.e., increased positive predictive value), and that this increase is consistent uniformly with GO-term depth. Additional in silico validation on a collection of new annotations recently added to GO confirms the advantages suggested by the cross-validation study. Taken as a whole, our results show that a hierarchical approach to network-based protein function prediction, that exploits the ontological structure of protein annotation databases in a principled manner, can offer substantial advantages over the successive application of 'flat' network-based methods.
Resumo:
This research investigated the unconfined flow through dams. The hydraulic conductivity was modeled as spatially random field following lognormal distribution. Results showed that the seepage flow produced from the stochastic solution was smaller than its deterministic value. In addition, the free surface was observed to exit at a point lower than that obtained from the deterministic solution. When the hydraulic conductivity was strongly correlated in the horizontal direction than the vertical direction, the flow through the dam has markedly increased. It is suggested that it may not be necessary to construct a core in dams made from soils that exhibit high degree of variability.
Resumo:
Blind steganalysis of JPEG images is addressed by modeling the correlations among the DCT coefficients using K -variate (K = 2) p.d.f. estimates (p.d.f.s) constructed by means of Markov random field (MRF) cliques. The reasoning of using high variate p.d.f.s together with MRF cliques for image steganalysis is explained via a classical detection problem. Although our approach has many improvements over the current state-of-the-art, it suffers from the high dimensionality and the sparseness of the high variate p.d.f.s. The dimensionality problem as well as the sparseness problem are solved heuristically by means of dimensionality reduction and feature selection algorithms. The detection accuracy of the proposed method(s) is evaluated over Memon's (30.000 images) and Goljan's (1912 images) image sets. It is shown that practically applicable steganalysis systems are possible with a suitable dimensionality reduction technique and these systems can provide, in general, improved detection accuracy over the current state-of-the-art. Experimental results also justify this assertion.
Resumo:
This paper investigated the problem of confined flow under dams and water retaining structuresusing stochastic modelling. The approach advocated in the study combined a finite elementsmethod based on the equation governing the dynamics of incompressible fluid flow through aporous medium with a random field generator that generates random hydraulic conductivity basedon lognormal probability distribution. The resulting model was then used to analyse confined flowunder a hydraulic structure. Cases for a structure provided with cutoff wall and when the wall didnot exist were both tested. Various statistical parameters that reflected different degrees ofheterogeneity were examined and the changes in the mean seepage flow, the mean uplift forceand the mean exit gradient observed under the structure were analysed. Results reveal that underheterogeneous conditions, the reduction made by the sheetpile in the uplift force and exit hydraulicgradient may be underestimated when deterministic solutions are used.
Resumo:
Les données provenant de l'échantillonnage fin d'un processus continu (champ aléatoire) peuvent être représentées sous forme d'images. Un test statistique permettant de détecter une différence entre deux images peut être vu comme un ensemble de tests où chaque pixel est comparé au pixel correspondant de l'autre image. On utilise alors une méthode de contrôle de l'erreur de type I au niveau de l'ensemble de tests, comme la correction de Bonferroni ou le contrôle du taux de faux-positifs (FDR). Des méthodes d'analyse de données ont été développées en imagerie médicale, principalement par Keith Worsley, utilisant la géométrie des champs aléatoires afin de construire un test statistique global sur une image entière. Il s'agit d'utiliser l'espérance de la caractéristique d'Euler de l'ensemble d'excursion du champ aléatoire sous-jacent à l'échantillon au-delà d'un seuil donné, pour déterminer la probabilité que le champ aléatoire dépasse ce même seuil sous l'hypothèse nulle (inférence topologique). Nous exposons quelques notions portant sur les champs aléatoires, en particulier l'isotropie (la fonction de covariance entre deux points du champ dépend seulement de la distance qui les sépare). Nous discutons de deux méthodes pour l'analyse des champs anisotropes. La première consiste à déformer le champ puis à utiliser les volumes intrinsèques et les compacités de la caractéristique d'Euler. La seconde utilise plutôt les courbures de Lipschitz-Killing. Nous faisons ensuite une étude de niveau et de puissance de l'inférence topologique en comparaison avec la correction de Bonferroni. Finalement, nous utilisons l'inférence topologique pour décrire l'évolution du changement climatique sur le territoire du Québec entre 1991 et 2100, en utilisant des données de température simulées et publiées par l'Équipe Simulations climatiques d'Ouranos selon le modèle régional canadien du climat.
Resumo:
Le domaine biomédical est probablement le domaine où il y a les ressources les plus riches. Dans ces ressources, on regroupe les différentes expressions exprimant un concept, et définit des relations entre les concepts. Ces ressources sont construites pour faciliter l’accès aux informations dans le domaine. On pense généralement que ces ressources sont utiles pour la recherche d’information biomédicale. Or, les résultats obtenus jusqu’à présent sont mitigés : dans certaines études, l’utilisation des concepts a pu augmenter la performance de recherche, mais dans d’autres études, on a plutôt observé des baisses de performance. Cependant, ces résultats restent difficilement comparables étant donné qu’ils ont été obtenus sur des collections différentes. Il reste encore une question ouverte si et comment ces ressources peuvent aider à améliorer la recherche d’information biomédicale. Dans ce mémoire, nous comparons les différentes approches basées sur des concepts dans un même cadre, notamment l’approche utilisant les identificateurs de concept comme unité de représentation, et l’approche utilisant des expressions synonymes pour étendre la requête initiale. En comparaison avec l’approche traditionnelle de "sac de mots", nos résultats d’expérimentation montrent que la première approche dégrade toujours la performance, mais la seconde approche peut améliorer la performance. En particulier, en appariant les expressions de concepts comme des syntagmes stricts ou flexibles, certaines méthodes peuvent apporter des améliorations significatives non seulement par rapport à la méthode de "sac de mots" de base, mais aussi par rapport à la méthode de Champ Aléatoire Markov (Markov Random Field) qui est une méthode de l’état de l’art dans le domaine. Ces résultats montrent que quand les concepts sont utilisés de façon appropriée, ils peuvent grandement contribuer à améliorer la performance de recherche d’information biomédicale. Nous avons participé au laboratoire d’évaluation ShARe/CLEF 2014 eHealth. Notre résultat était le meilleur parmi tous les systèmes participants.
Resumo:
This work presents an analysis of hysteresis and dissipation in quasistatically driven disordered systems. The study is based on the random field Ising model with fluctuationless dynamics. It enables us to sort out the fraction of the energy input by the driving field stored in the system and the fraction dissipated in every step of the transformation. The dissipation is directly related to the occurrence of avalanches, and does not scale with the size of Barkhausen magnetization jumps. In addition, the change in magnetic field between avalanches provides a measure of the energy barriers between consecutive metastable states
Resumo:
Airborne LIght Detection And Ranging (LIDAR) provides accurate height information for objects on the earth, which makes LIDAR become more and more popular in terrain and land surveying. In particular, LIDAR data offer vital and significant features for land-cover classification which is an important task in many application domains. In this paper, an unsupervised approach based on an improved fuzzy Markov random field (FMRF) model is developed, by which the LIDAR data, its co-registered images acquired by optical sensors, i.e. aerial color image and near infrared image, and other derived features are fused effectively to improve the ability of the LIDAR system for the accurate land-cover classification. In the proposed FMRF model-based approach, the spatial contextual information is applied by modeling the image as a Markov random field (MRF), with which the fuzzy logic is introduced simultaneously to reduce the errors caused by the hard classification. Moreover, a Lagrange-Multiplier (LM) algorithm is employed to calculate a maximum A posteriori (MAP) estimate for the classification. The experimental results have proved that fusing the height data and optical images is particularly suited for the land-cover classification. The proposed approach works very well for the classification from airborne LIDAR data fused with its coregistered optical images and the average accuracy is improved to 88.9%.
Resumo:
Rainfall can be modeled as a spatially correlated random field superimposed on a background mean value; therefore, geostatistical methods are appropriate for the analysis of rain gauge data. Nevertheless, there are certain typical features of these data that must be taken into account to produce useful results, including the generally non-Gaussian mixed distribution, the inhomogeneity and low density of observations, and the temporal and spatial variability of spatial correlation patterns. Many studies show that rigorous geostatistical analysis performs better than other available interpolation techniques for rain gauge data. Important elements are the use of climatological variograms and the appropriate treatment of rainy and nonrainy areas. Benefits of geostatistical analysis for rainfall include ease of estimating areal averages, estimation of uncertainties, and the possibility of using secondary information (e.g., topography). Geostatistical analysis also facilitates the generation of ensembles of rainfall fields that are consistent with a given set of observations, allowing for a more realistic exploration of errors and their propagation in downstream models, such as those used for agricultural or hydrological forecasting. This article provides a review of geostatistical methods used for kriging, exemplified where appropriate by daily rain gauge data from Ethiopia.
Resumo:
Using the formalism of the Ruelle response theory, we study how the invariant measure of an Axiom A dynamical system changes as a result of adding noise, and describe how the stochastic perturbation can be used to explore the properties of the underlying deterministic dynamics. We first find the expression for the change in the expectation value of a general observable when a white noise forcing is introduced in the system, both in the additive and in the multiplicative case. We also show that the difference between the expectation value of the power spectrum of an observable in the stochastically perturbed case and of the same observable in the unperturbed case is equal to the variance of the noise times the square of the modulus of the linear susceptibility describing the frequency-dependent response of the system to perturbations with the same spatial patterns as the considered stochastic forcing. This provides a conceptual bridge between the change in the fluctuation properties of the system due to the presence of noise and the response of the unperturbed system to deterministic forcings. Using Kramers-Kronig theory, it is then possible to derive the real and imaginary part of the susceptibility and thus deduce the Green function of the system for any desired observable. We then extend our results to rather general patterns of random forcing, from the case of several white noise forcings, to noise terms with memory, up to the case of a space-time random field. Explicit formulas are provided for each relevant case analysed. As a general result, we find, using an argument of positive-definiteness, that the power spectrum of the stochastically perturbed system is larger at all frequencies than the power spectrum of the unperturbed system. We provide an example of application of our results by considering the spatially extended chaotic Lorenz 96 model. These results clarify the property of stochastic stability of SRB measures in Axiom A flows, provide tools for analysing stochastic parameterisations and related closure ansatz to be implemented in modelling studies, and introduce new ways to study the response of a system to external perturbations. Taking into account the chaotic hypothesis, we expect that our results have practical relevance for a more general class of system than those belonging to Axiom A.