975 resultados para columnar defect
Resumo:
Advances in the dual electron-beam recrystallization technique arising from the fast scanning of a line beam parallel to the edges of narrow seeding windows are described. The resultant recrystallized layers are essentially defect-free, have good surface flatness, and cover large areas.
Resumo:
Hydrogenated tetrahedral amorphous carbon (ta-C:H) is a form of diamond-like carbon with a high sp3 content (>60%), grown here using a plasma beam source. Information on the behaviour of hydrogen upon annealing is obtained from effusion measurements, which show that hydrogen does not effuse significantly at temperatures less than 500 °C in films grown using methane and 700 °C in films grown using acetylene. Raman measurements show no significant structural changes at temperatures up to 300 °C. At higher temperatures, corresponding to the onset of effusion, the Raman spectra show a clustering of the sp2 phase. The density of states of ta-C:H is directly measured using scanning tunnelling spectroscopy. The measured gradients of the conduction and valence band tails increase up to 300 °C, confirming the occurrence of band tail sharpening. Examination of the photoluminescence background in the Raman spectra shows an increase in photoluminescence intensity with decreasing defect density, providing evidence that paramagnetic defects are the dominant non-radiative recombination centres in ta-C:H.
Resumo:
Thin film transistors (TFTs) utilizing an hydrogenated amorphous silicon (a-Si:H) channel layer exhibit a shift in the threshold voltage with time under the application of a gate bias voltage due to the creation of metastable defects. These defects are removed by annealing the device with zero gate bias applied. The defect removal process can be characterized by a thermalization energy which is, in turn, dependent upon an attempt-to-escape frequency for defect removal. The threshold voltage of both hydrogenated and deuterated amorphous silicon (a-Si:D) TFTs has been measured as a function of annealing time and temperature. Using a molecular dynamics simulation of hydrogen and deuterium in a silicon network in the H2 * configuration, it is shown that the experimental results are consistent with an attempt-to-escape frequency of (4.4 ± 0.3) × 1013 Hz and (5.7 ± 0.3) × 1013 Hz for a-Si:H and a-Si:D respectively which is attributed to the oscillation of the Si-H and Si-D bonds. Using this approach, it becomes possible to describe defect removal in hydrogenated and deuterated material by the thermalization energies of (1.552 ± 0.003) eV and (1.559 ± 0.003) eV respectively. This correlates with the energy per atom of the Si-H and Si-D bonds. © 2006 Elsevier B.V. All rights reserved.
Resumo:
Thermal barrier coatings with a columnar microstructure are prone to erosion damage by a mechanism of surface cracking upon impact by small foreign particles. In order to explore this erosion mechanism, the elastic indentation and the elastic-plastic indentation responses of a columnar thermal barrier coating to a spherical indenter were determined by the finite element method and by analytical models. It was shown that the indentation response is intermediate between that of a homogeneous half-space and that given by an elastic-plastic mattress model (with the columns behaving as independent non-linear springs). The sensitivity of the indentation behaviour to geometry and to the material parameters was explored: the diameter of the columns, the gap width between columns, the coefficient of Coulomb friction between columns and the layer height of the thermal barrier coating. The calculations revealed that the level of induced tensile stress is sufficient to lead to cracking of the columns at a depth of about the column radius. It was also demonstrated that the underlying soft bond coat can undergo plastic indentation when the coating comprises parallel columns, but this is less likely for the more realistic case of a random arrangement of tapered columns. © 2009 Elsevier B.V.