939 resultados para collective reasons
Resumo:
Using the once and thrice energy-weighted moments of the random-phase-approximation strength function, we have derived compact expressions for the average energy of surface collective oscillations of clusters and spheres of metal atoms. The L=0 volume mode has also been studied. We have carried out quantal and semiclassical calculations for Na and Ag systems in the spherical-jellium approximation. We present a rather thorough discussion of surface diffuseness and quantal size effects on the resonance energies.
Resumo:
We have investigated the fragmentation of collective modes in doped 4He drops in the framework of a finite-range density-functional theory, as well as the delocalization of the impurity inside the cluster. Our results indicate that the impurity is gradually delocalized inside the drop as the size of the latter increases. As an example, results are shown in the case of Xe-4HeN systems up to N=112.
Resumo:
The monopole (L=0) and quadrupole (L=2) strength distributions in normal 3He clusters are calculated within the random-phase approximation. We use a phenomenological, zero-range 3-3He interaction to generate the Hartree-Fock single-particle spectrum and the residual particle-hole interaction. The evolution of the collective modes with the number of atoms in the cluster is discussed.
Resumo:
The density of states of a Bose-condensed gas confined in a harmonic trap is investigated. The predictions of Bogoliubov theory are compared with those of Hartree-Fock theory and of the hydrodynamic model. We show that the Hartree-Fock scheme provides an excellent description of the excitation spectrum in a wide range of energy, revealing a major role played by single-particle excitations in these confined systems. The crossover from the hydrodynamic regime, holding at low energies, to the independent-particle regime is explicitly explored by studying the frequency of the surface mode as a function of their angular momentum. The applicability of the semiclassical approximation for the excited states is also discussed. We show that the semiclassical approach provides simple and accurate formulas for the density of states and the quantum depletion of the condensate.
Resumo:
Interaction between collective monopole oscillations of a trapped Bose-Einstein condensate and thermal excitations is investigated by means of perturbation theory. We assume spherical symmetry to calculate the matrix elements by solving the linearized Gross-Pitaevskii equations. We use them to study the resonances of the condensate induced by temperature when an external perturbation of the trapping frequency is applied and to calculate the Landau damping of the oscillations.
Resumo:
The response function of alkali-metal clusters, modeled as jellium spheres, to dipole (L=1) and quadrupole (L=2) spin-dependent fields is obtained within the time-dependent local-spin-density approximation of density-functional theory. We predict the existence of low-energy spin modes of surface type, which are identified from the strength function. Their collectivity and evolution with size are discussed.
Resumo:
Collective dynamic properties in Lennard-Jones crystals are investigated by molecular dynamics simulation. The study is focused on properties such as the dynamic structure factors, the longitudinal and transverse currents and the density of states. The influence on these properties of the structural disorder is analyzed by comparing the results for one-component crystals with those for liquids and supercooled liquids at analogous conditions. The effects of species-disorder on the collective properties of binary crystals are also discussed.
Resumo:
A Comment on the Letter by Ubaldo Bafile, et al., Phys. Rev. Lett. 86, 1019 (2001). The authors of the Letter offer a Reply.
Resumo:
In recent years, many researchers have claimed that world reserves of rock phosphate were getting depleted at an alarming rate, putting us on the path to scarcity of that essential resource within the next few decades. Others have claimed that such alarmist forecasts were frequent in the past and have always been proven unfounded, making it likely that the same will be true in the future. Both viewpoints are directly relevant to the level of funding devoted to research on the use of phosphate fertilizers. In this short essay, it is argued that information about future reserves of P or any other resource are impossible to predict, and therefore that the threat of a possible depletion of P reserves should not be used as a key motivation for an intensification of research on soil P. However, there are other, more compelling reasons, both geopolitical and environmental, to urgently step up our collective efforts to devise agricultural practices that make better use of P than is the case at the moment.
Resumo:
Existence of collective effects in magnetic coupling in ionic solids is studied by mapping spin eigenstates of the Heisenberg and exact nonrelativistic Hamiltonians on cluster models representing KNiF3, K2NiF4, NiO, and La2CuO4. Ab initio techniques are used to estimate the Heisenberg constant J. For clusters with two magnetic centers, the values obtained are about the same for models having more magnetic centers. The absence of collective effects in J strongly suggests that magnetic interactions in this kind of ionic solids are genuinely local and entangle only the two magnetic centers involved.
Resumo:
Collective behaviour enhances environmental sensing and decision-making in groups of animals. Experimental and theoretical investigations of schooling fish, flocking birds and human crowds have demonstrated that simple interactions between individuals can explain emergent group dynamics. These findings indicate the existence of neural circuits that support distributed behaviours, but the molecular and cellular identities of relevant sensory pathways are unknown. Here we show that Drosophila melanogaster exhibits collective responses to an aversive odour: individual flies weakly avoid the stimulus, but groups show enhanced escape reactions. Using high-resolution behavioural tracking, computational simulations, genetic perturbations, neural silencing and optogenetic activation we demonstrate that this collective odour avoidance arises from cascades of appendage touch interactions between pairs of flies. Inter-fly touch sensing and collective behaviour require the activity of distal leg mechanosensory sensilla neurons and the mechanosensory channel NOMPC. Remarkably, through these inter-fly encounters, wild-type flies can elicit avoidance behaviour in mutant animals that cannot sense the odour--a basic form of communication. Our data highlight the unexpected importance of social context in the sensory responses of a solitary species and open the door to a neural-circuit-level understanding of collective behaviour in animal groups.