979 resultados para cold-water corals
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Lettered on cover: Third edition.
Resumo:
Mode of access: Internet.
Resumo:
Preface signed: The compilers.
Resumo:
Includes index.
Resumo:
Rice (Oryza sativa L.) plants are susceptible to low temperature during the young microspore stage, which occurs 10-12 days before heading. Low temperature at this time increases spikelet sterility which can cause massive yield loss. Increasing the cold tolerance of cultivars can reduce yield variability in temperate rice-growing environments. Two experiments were conducted in cold air screenings and two were conducted in cold water screenings to examine genotypic variation for cold tolerance, explore flowering traits related to spikelet sterility, and investigate whether the results reflect the level of cold tolerance determined previously in the field. Cold air screenings imposed day/night temperatures of 27 degrees C/13 degrees C, 25 degrees C/15 degrees C and 32 degrees C/25 degrees C following particle initiation until 50% heading, while cold water screenings maintained a relatively constant 19 degrees C. The variation in the commencement of low air temperature treatment did not have an effect on the level of spikelet sterility, indicating that exposure to low temperature during the young microspore stage was more important than the duration of exposure. Spikelet sterility of common cultivars showed a significant correlation between cold air and cold water screenings (r(2) = 0.63, p < 0.01), cold air and field screenings (r(2) = 0.52, p < 0.01) and cold water and field screenings (r(2) = 0.53, p < 0.01), indicating that cold air and cold water can be used for screening genotypes for low temperature tolerance. HSC55, M 103 and Jyoudeki were identified as cold tolerant and Doongara, Sasanishiki and Nipponbare as susceptible cultivars. There was a significant negative relationship between spikelet sterility and both the number of engorged pollen grains per anther and anther area only after imposing cold air and cold water treatment hence, it was concluded that these flowering traits were facultative in nature. In addition, cultivars originating from Australia and California were inefficient at producing filled grain with similar sized anthers containing a similar number of engorged pollen grains as cultivars from other origins. One suggested reason for this poor conversion to filled grain of cultivars from Australia and California may be associated with their small stigma area, particularly when exposed to low temperature conditions. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The origin of three Red Sea submarine brine pools was investigated by analysis of the S and O isotope ratios of dissolved sulfate and Sr isotope ratios of dissolved Sr in the brines. Sulfur and O isotope ratios of sulfate and Sr isotope ratios of evaporitic source rocks for the brines were measured for comparison. The S, O and Sr isotope ratios of evaporites recovered from DSDP site 227 are consistent with an upper Miocene evaporites age. The Valdivia Deep brine formed by karstic dissolution of Miocene evaporites by overlying seawater and shows no signs of hydrothermal input. The Suakin Deep brines are derived from, or have isotopically exchanged with Miocene or older evaporites. There has been only minor dilution of the brine by overlying seawater. Strontium isotope ratios of Suakin brine may indicate addition of a minor (15%) amount of volcanic Sr to the brine, but there is no evidence of high temperature brine-rock interaction. The sulfate in the Atlantis II brine was apparently derived from seawater. The O isotope ratio of sulfate in the present Atlantis II brine could reflect isotopic exchange between seawater sulfate and the brine at approximately 255°C. Approximately 30% of the Sr in the Atlantis II brine is derived from the underlying basalt, probably by hydrothermal leaching. Atlantis II brine is the only known example from the Red Sea which has a significant high-temperature hydrothermal history.
Resumo:
Funding for the JC073 cruise was provided by the Natural Environment Research Council (NERC) UK Ocean Acidification (UKOA) research programme’s Benthic Consortium project (NE/H017305/1 to J Murray Roberts). Funding for analytical costs and field work was provided by the Marine Alliance for Science and Technology Scotland (MASTS) (Biodiversity Grant to Ursula FM Witte, 140 SF10003-10). Georgios Kazanidis was funded by a MASTS PhD scholarship.
Resumo:
The authors would like to thank the leadership of the Deep Ocean Stewardship Initiative (DOSI), including Lisa Levin, Maria Baker, and Kristina Gjerde, for their support in developing this review. This work evolved from a meeting of the DOSI Oil and Gas working group supported by the J.M. Kaplan Fund, and associated with the Deep-Sea Biology Symposium in Aveiro, Portugal in September 2015. The members of the Oil and Gas working group that contributed to our discussions at that meeting or through the listserve are acknowledged for their contributions to this work. We would also like to thank the three reviewers and the editor who provided valuable comments and insight into the work presented here. DJ and AD were supported by funding from the European Union's Horizon 2020 research and innovation programme under the MERCES (Marine Ecosystem Restoration in Changing European Seas) project, grant agreement No 689518. AB was supported by CNPq grants 301412/2013-8 and 200504/2015-0. LH acknowledges funding provided by a Natural Environment Research Council grant (NE/L008181/1). This output reflects only the authors' views and the funders cannot be held responsible for any use that may be made of the information contained therein.
Resumo:
Geochemical variations in shallow water corals provide a valuable archive of paleoclimatic information. However, biological effects can complicate the interpretation of these proxies, forcing their application to rely on empirical calibrations. Carbonate clumped isotope thermometry (Delta47) is a novel paleotemperature proxy based on the temperature dependent "clumping" of 13C-18O bonds. Similar ?47-temperature relationships in inorganically precipitated calcite and a suite of biogenic carbonates provide evidence that carbonate clumped isotope variability may record absolute temperature without a biological influence. However, large departures from expected values in the winter growth of a hermatypic coral provided early evidence for possible Delta47 vital effects. Here, we present the first systematic survey of Delta47 in shallow water corals. Sub-annual Red Sea Delta47 in two Porites corals shows a temperature dependence similar to inorganic precipitation experiments, but with a systematic offset toward higher Delta47 values that consistently underestimate temperature by ~8 °C. Additional analyses of Porites, Siderastrea, Astrangia and Caryophyllia corals argue against a number of potential mechanisms as the leading cause for this apparent Delta47 vital effect including: salinity, organic matter contamination, alteration during sampling, the presence or absence of symbionts, and interlaboratory differences in analytical protocols. However, intra- and inter-coral comparisons suggest that the deviation from expected Delta47 increases with calcification rate. Theoretical calculations suggest this apparent link with calcification rate is inconsistent with pH-dependent changes in dissolved inorganic carbon speciation and with kinetic effects associated with CO2 diffusion into the calcifying space. However, the link with calcification rate may be related to fractionation during the hydration/hydroxylation of CO2 within the calcifying space. Although the vital effects we describe will complicate the interpretation of Delta47 as a paleothermometer in shallow water corals, it may still be a valuable paleoclimate proxy, particularly when applied as part of a multi-proxy approach.
Resumo:
Aflatoxins are one kind of fungal toxins produced by species of toxigenic Aspergillus (A. flavus and A. parasiticus) and in other words they are secondary metabolites which are considered as one of the threatening factors of food consumer's health. In this research 96 samples of cold-water cultural fish feed, rainbow trout, during the seasons of spring and summer of 2007 (every fifteenth of the month) were randomized (by simple and stratified random) to determine: 1. The prevalence rate of aflatoxigenic species of Aspergillus in stored feed of cold-water cultural fish in West Azarbayjan cultural fish farms in both seasons (spring and summer); 2. The residues of total aflatoxin in stored feed of fish in cultural fish farms of West Azarbayjan in both seasons by ELISA method; and 3. The residues of that toxin in feed produced in aquatic feed factories in Tehran and West Azarbyjan provinces with the same method. In order to study prevalence rate of toxigenic species of Aspergillus, pour-plate culture method by general medium such as Malt Extract Agar (M.E.A.) and Sabouraud-Dextrose Agar (S.D.A.) and by standard No.997 of Iranian Standard Institute were used. The produced colonies were examined microscopically. To determine the aflatoxins residues, ELISA method using Agra-Quant kit of Romer Lab company, were applied. The results of this survey indicated that only 8.3% of the samples were infected by A. flavus. A. parasiticus was not observed. There were no significant differences between the prevalence rate of AFT and seasons/months, either (P<0.05). Evaluating mean of aflatoxin rate showed that the rates of this variable are lower than the tolerance levels designated by the joint FAO/WHO expert committee (The mean of AFT in all data was lower than 11 ppb). Furthermore, mean of total AFT residues rates of stored feed of various cultural center of West Azarbayjan and Tehran factories were comparable in spring and summer, and no significant differences were observed (P<0.05). But there were significant differences between the total aflatoxin rates in the feed of West Azarbayjan factory and spring and summer (P<0.05), and AFT residues in spring (8.6 ppb) were higher than summer (6.1 ppb). Prevalence rates of AFT in Tehran feed factories (9.2 ppb) are higher than W. Azarbayjan (7.4 ppb). In other words, location was considered as a decisive factor in total AFT rates of samples. Moreover, the results indicated that there was significant difference between total aflatoxin rates of feed and cultural centers (P<0.05). The mean of AFT rates in embankment dam cultural fish farms (6.75 ppb) and multi-functions cultural fish farms (6.25 ppb) was higher than individual cultural pond (4.67 ppb). In conclusion, the finally results of this survey indicated that the lower rates of Aspergillus is not effective on the presence of total aflatoxin rates in trout feed. Due to low levels of aflatoxin rates (lower than 20 ppb), the produced feed of cold-cultural fishes, Rainbow Trout, in Tehran and West Azarbayjan provinces, in spring and summer of 2007, were safe and healthy both for fish and their consumers.
Resumo:
The 5th Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) states with very high certainty that anthropogenic emissions have caused measurable changes in the physical ocean environment. These changes are summarized with special focus on those that are predicted to have the strongest, most direct effects on ocean biological processes; namely, ocean warming and associated phenomena (including stratification and sea level rise) as well as deoxygenation and ocean acidification. The biological effects of these changes are then discussed for microbes (including phytoplankton), plants, animals, warm and cold-water corals, and ecosystems. The IPCC AR5 highlighted several areas related to both the physical and biological processes that required further research. As a rapidly developing field, there have been many pertinent studies published since the cut off dates for the AR5, which have increased our understanding of the processes at work. This study undertook an extensive review of recently published literature to update the findings of the AR5 and provide a synthesized review on the main issues facing future oceans. The level of detail provided in the AR5 and subsequent work provided a basis for constructing projections of the state of ocean ecosystems in 2100 under two the Representative Concentration Pathways RCP4.5 and 8.5. Finally the review highlights notable additions, clarifications and points of departure from AR5 provided by subsequent studies.