898 resultados para classification of service activities


Relevância:

100.00% 100.00%

Publicador:

Resumo:

v.28:no.2(1944)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to characterize, and compare different morphological types of hemocytes of Rhodnius prolixus, Rhodnius, Rhodnius neglectus, Triatoma infestans, Panstrongylus megistus, and Dipetalogaster maximus. This information provides the basis for studying the cellular immune systems of these insects. Seven morphological hemocyte types wereidentified by phase-contrast microscopy: prohemocytes, plasmatocytes, granular cells, cytocytes, oenocytoids, adipohemocytes and giant cells. All seven types of hemocytes are not present in every species. For example, adipohemocytes and oenocytoids were not observed in P. megistus and P. infestans, and giant cells were rarely found in any of the species studied. The hemocytes of rhodnius and Dipetalogaster are more similar to each other than those from Triatoma and Panstrongylus which in turn closely resemble each other. Emphasis is placed on methodological problems arising in this work wicah are discussed in detail.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The proteocephalid species Gibsoniela mandube (Woodland, 1935) from the siluriform fish Ageneiosus brevifilis from rio Paraná, is redescribed. This species was originally described from the same species of fish from the Amazon. The genus Gibsoniela Rego, 1984 is redefined and confirmed in the Monticeliidae. Comments are made on the relationships of the proteocephalid and monticelliid subfamilies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies the effects of service offshoring on the level and skill composition of domestic employment, using a rich data set of Italian firms and propensity score matching techniques. The results show that service offshoring has no effect on the level of employment but changes its composition in favor of high skilled workers.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to classify mosquito immature stage habitats, samples were taken in 42 localities of Córdoba Province, Argentina, representing the phytogeographic regions of Chaco, Espinal and Pampa. Immature stage habitats were described and classified according to the following criteria: natural or artificial; size; location related to light and neighboring houses; vegetation; water: permanence, movement, turbidity and pH. Four groups of species were associated based on the habitat similarity by means of cluster analysis: Aedes albifasciatus, Culex saltanensis, Cx. mollis, Cx. brethesi, Psorophora ciliata, Anopheles albitarsis, and Uranotaenia lowii (Group A); Cx. acharistus, Cx. quinquefasciatus, Cx. bidens, Cx. dolosus, Cx. maxi and Cx. apicinus (Group B); Cx. coronator, Cx. chidesteri, Mansonia titillans and Ps. ferox (Group C); Ae. fluviatilis and Ae. milleri (Group D). The principal component analysis (ordination method) pointed out that the different types of habitats, their nature (natural or artificial), plant species, water movement and depth are the main characters explaining the observed variation among the mosquito species. The distribution of mosquito species by phytogeographic region did not affect the species groups, since species belonging to different groups were collected in the same region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Land cover classification is a key research field in remote sensing and land change science as thematic maps derived from remotely sensed data have become the basis for analyzing many socio-ecological issues. However, land cover classification remains a difficult task and it is especially challenging in heterogeneous tropical landscapes where nonetheless such maps are of great importance. The present study aims to establish an efficient classification approach to accurately map all broad land cover classes in a large, heterogeneous tropical area of Bolivia, as a basis for further studies (e.g., land cover-land use change). Specifically, we compare the performance of parametric (maximum likelihood), non-parametric (k-nearest neighbour and four different support vector machines - SVM), and hybrid classifiers, using both hard and soft (fuzzy) accuracy assessments. In addition, we test whether the inclusion of a textural index (homogeneity) in the classifications improves their performance. We classified Landsat imagery for two dates corresponding to dry and wet seasons and found that non-parametric, and particularly SVM classifiers, outperformed both parametric and hybrid classifiers. We also found that the use of the homogeneity index along with reflectance bands significantly increased the overall accuracy of all the classifications, but particularly of SVM algorithms. We observed that improvements in producer’s and user’s accuracies through the inclusion of the homogeneity index were different depending on land cover classes. Earlygrowth/degraded forests, pastures, grasslands and savanna were the classes most improved, especially with the SVM radial basis function and SVM sigmoid classifiers, though with both classifiers all land cover classes were mapped with producer’s and user’s accuracies of around 90%. Our approach seems very well suited to accurately map land cover in tropical regions, thus having the potential to contribute to conservation initiatives, climate change mitigation schemes such as REDD+, and rural development policies.