1000 resultados para chlorite smectite


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eighty-four sediment samples from four holes at Site 502 and 54 samples from three holes at Site 503 were analyzed for mineral content by semiquantitative X-ray diffraction methods. Site 502 is located in the Western Caribbean, whereas Site 503 lies in the Eastern Pacific (probably on the north flank of the Galapagos Spreading Center). Both sites were chosen to yield continuous core sections for investigations of late Neogene and Quaternary biostratigraphy and magnetostratigraphy and to study events such as the closing of the Isthmus of Panama. Our X-ray diffraction work should provide a framework for further investigations - for example, determination of climatic changes in relationship to clay mineral composition or the influx of terrigeneous sediment components from South America before and after development of the Panama landbridge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insoluble residues of Late Cretaceous to Quaternary deep-sea samples from slope, trench, and oceanic plate sites south of Guatemala were examined, specifically for the distribution of clay minerals in the <2-µm fraction and of silt grains in the 20-63-µm fraction. Widespread "oceanic" particles (biogenic opal, rhyolitic glass) and their diagenetic products (smectite, clinoptilolite, heulandite) were distinguished from terrigenous material - illite, kaolinite, chlorite, plagioclase, quartz, and heavy minerals. The main results of this investigation are: (1) At Site 494 on the slope immediately adjacent to the trench, terrigenous supplies testify to a slope position of the whole sequence back to the Late Cretaceous. (2) At Site 495 on the Pacific Cocos Plate, "oceanic" and terrigenous sedimentation are clearly separated. Whereas the pelagic sedimentation prevailed in the early Miocene, terrigenous minerals appeared in the middle Miocene in the clay fraction, and in the early Pliocene in the coarse silt fraction. These terrigenous supplies are interpreted as having been transported by suspension clouds crossing the slope and even the trench. The alternative, however, an eolian transport, cannot be excluded.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sediments recovered by drilling during Legs 58, 59, and 60 in the North and South Philippine Sea have been analyzed by X-ray diffractometry. The CaCO3 content was measured separately. The sites encompass several volcanic ridges and intervening inter-arc basin troughs as well as sites on the Mariana arc fore-arc sediment prism and the Mariana Trench. The sediments at all sites received major volcanogenic input from the various arcs; they tend to be rich in volcanic glass, with associated quartz, feldspar, pyroxenes and amphibole. Carbonate is a major component only at Site 445 at the southern end of the Daito Ridge, and at Site 448 on the Palau-Kyushu Ridge. All other sites were either deep relative to the carbonate compensation depth or had very high non-carbonate sedimentation rates. Clay minerals are mainly smectite and illite with lesser variable proportions of chlorite and kaolinite. Smectite predominates over illite except at sites in the Shikoku Basin and the Daito Ridge, and at one site in the Mariana Trench. At several sites, smectite increases and illite decreases with depth. Principal zeolites are phillipsite and clinoptilolite. Analcime occurs in some samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The regional patterns of texture and composition of modern continental slope and pelagic sediments off Chile between 25°S and 43°S reflect the latitudinal segmentation of geological, morphological, and climatic features of the continental hinterland. Grain-size characteristics are controlled by the grain-size of source rocks, the weathering regime, and mode of sediment input (eolian off northern Chile vs fluvial further south). Bulk-mineral assemblages reveal a low grade of maturity. Regional variations are governed by the source-rock composition of the different geological terranes and the relative source-rock contribution of the Coastal Range and Andes, as controlled by the continental hydrology. The relative abundance of clay minerals is also predominantly influenced by the source-rock composition and partly by continental smectite neoformation. Latitudinal variations of illite crystallinities along the Chilean continental slope (and west of the Peru-Chile trench) clearly reflect modifications of the weathering regime which correspond to the strong climatic zonation of Chile.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geochemical and clay mineral parameters of a high accumulation marine sediment core from the Chilean continental slope (41°S) provide a 7700 yr record of rainfall variability in southern Chile related to the position of the Southern Westerlies. We especially use the iron content, measured with a time-resolution of ca. 10 yr on average, of 14C-accelerator mass spectrometry dated marine sediments as a proxy for the relative input of iron-poor Coastal Range and iron-rich Andean source rocks. Variations in this input are most likely induced by rainfall changes in the continental hinterland of the core position. Based on these interpretations, we find a pronounced rainfall variability on multi-centennial to millennial time-scales, superimposed on generally more arid conditions during the middle Holocene (7700 to 4000 cal yr B.P.) compared to the late Holocene (4000 to present). This variability and thus changes in the position of the Southern Westerlies are first compared to regional terrestrial paleoclimate data-sets from central and southern Chile. In order to derive possible wider implications and forcing mechanisms of the Holocene latitudinal shifts of the Southern Westerlies, we then compare our data to ice-core records from both tropical South America and coastal Antarctica. These records show similar bands of variability centered at ca. 900 and 1500 yr. Comparisons of band pass filters suggest a close connection of shifts of the Southern Westerlies to changes within the tropical climate system. The correlation to climate conditions in coastal Antarctica shows a more complicated picture with a phase shift at the beginning of the late Holocene coinciding with the onset of the modern state of El Niño-Southern Oscillation system. The presented data provide further evidence that the well known millennial-scale climate variability during the last glacial continued throughout the Holocene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To reconstruct Recent and past sedimentary environments, marine sediments of Upper Pleistocene and Holocene ages from the eastern Arctic Ocean and especially from the Nansen-Gakkel Ridge (NGR) were investigated by means of radioisotopic, geochemical and sedimentological methods. In combination with mass physical property data and lithological analysis these investigations allow clearly to characterize the depositional environments. Age dating by using the radioisotope 230Th gives evidence that the investigated sediments from the NGR are younger than 250,000 years. Identical lithological sediment sequences within and between sediment cores from the NGR can be related to sedimentary processes which are clearly controlled by palaeoclimate. The sediments consist predominantly of siliciclastic, terrigenous ice-rafted detritus (IRD) deriving from assorted and redeposited sediments from the Siberian shelfs. By their geochemical composition the sediments are similar to mudstone, graywacke and arcose. Sea-ice as well as icebergs play a major roll in marine arctic sedimentation. In the NGR area rapid change in sedimentary conditions can be detected 128,000 years ago. This was due to drastic change in the kind of ice cover, resulting from rapid climatic change within only hundreds of years. So icebergs, deriving mostly from Siberian shelfs, vanished and sea-ice became dominant in the eastern Arctic Ocean. At least three short-period retreats of the shelf ice between 186,000 and 128,000 years are responsible for the change of coarse to fine-grained sediments in the NGR area. These warmer stages lasted between 1,000 and 3,000 years. By monitoring and comparing the distribution patterns of sedimentologic, mass physical and geochemical properties with 230Th ex activity distribution patterns in the sediment cores from the NGR, there is clear evidence that sediment dilution is responsible for high 230Th ex activity variations. Thus sedimentation rate is the controlling factor of 230Th ex activity variations. The 230Th flux density in sediments from the NGR seems to be highly dependent On topographic Position. The distribution patterns of chemical elements in sediment cores are in general governed by lithology. The derivation of a method for dry bulk density determination gave the opportunity to establish a high resolution stratigraphy on sediment cores from the eastern Arctic Ocean, based on 230Thex activity analyses. For the first time sedimentation and accumulation rates were determined for recent sediments in the eastern Arctic Ocean by 230Th ex analyses. Bulk accumulation rates are highly variable in space and time, ranging between 0.2 and 30 g/cm**2/ka. In the sediments from the NGR highly variable accumulation rates are related to the kind of ice cover. There is evidence for hydrothermal input into the sediments of the NGR. Hydrothermal activity probably also influences surficial sediments in the Sofia Basin. High contents of As are typical for surficial sediments from the NGR. In particular SL 370-20 from the bottom of the rift valley has As contents exceeding in parts 300 ppm. Hydrothermal activity can be traced back to at least 130,000 years. Recent to subrecent tectonic activity is documented by the rock debris in KAL 370 from the NGR. In four other sediment cores from the NGR rift valley area tectonically induced movements can be dated to about 130,000 years ago, related most probably to the rapid climate change. Processes of early diagenesis in sediments from the NGR caused the aobilization and redeposition of Fe, Mn and Mo. These diagenetic processes probably took place during the last 130,000 years. In sediment cores from the NGR high amounts of kaolinite are related to coarse grained siliciclastic material, probably indicating reworking and redeposition of siberian sandstones with kaolinitic binding material. In contrast to kaolinite, illite is correlated to total clay and 232Th contents. Aragonite, associated with serpentinites in the rift valley area of the NGR, was precipitated under cold bottom-water conditions. Preliminary data result in a time of formation about 60 - 80 ka ago. Manganese precipitates with high Ni contents, which can be related to the ultrabasic rocks, are of similar age.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The silicate fractions of recent pelagic sediments in the central north Pacific Ocean are dominated by eolian dust derived from central Asia. An 11 Myr sedimentary record at ODP Sites 885/886 at 44.7°N, 168.3°W allows the evaluation of how such dust and its sources have changed in response to late Cenozoic climate and tectonics. The extracted eolian fraction contains variable amounts (>70%) of clay minerals with subordinate quartz and plagioclase. Uniform Nd isotopic compositions (epsilon-Nd =38.6 to 310.5) and Sm/Nd ratios (0.170-0.192) for most of the 11 Myr record demonstrate a well-mixed provenance in the basins north of the Tibetan Plateau and the Gobi Desert that was a source of dust long before the oldest preserved Asian loess formed. epsilon-Nd values of up to 36.5 for samples 62.9 Ma indicate <=35 wt% admixture of a young, Kamchatka-like volcanic arc component. The coherence of Pb and Nd in the erosional cycle allows us to constrain the Pb isotopic composition of Asian loess devoid of anthropogenic contamination to 206Pb/204Pb =18.97 +/- 0.06, 207Pb/204Pb =15.67 +/- 0.02, 208Pb/204Pb =39.19 +/- 0.11. 87Sr/86Sr (0.711-0.721) and Rb/Sr ratios (0.39-1.1) vary with dust mineralogy and provide an age indication of ~250 Ma. 40Ar/39Ar ages of six dust samples are uniform around 200 Ma and match the K-Ar ages of modern dust deposited on Hawaii. These data reflect the weighted age average of illite formation. Changes from illite- smectite with significant kaolinite to illite- and chlorite-rich, kaolinite-free assemblages since the late Pliocene document changes in the intensity of chemical weathering in the source region. Such weathering evidently did not disturb the K-Ar systematics, and only induced scatter in the Rb-Sr data. We propose that when smectite forms at the expense of illite, K and Ar are quantitatively lost from what becomes smectite, but are quantitatively retained in adjacent illite layers. 40Ar/39Ar age data, therefore, are insensitive to smectite formation during chemical weathering but date the diagenetic growth of illite, the major K-bearing phase in the dust. Over the past 12 Myr, the dust flux to the north Pacific increased by more than an order of magnitude, documenting a substantial drying of central Asia. This climatic change, however, did not alter the ultimate source of the dust, and neoformational products of chemical weathering always remained subordinate to assemblages reworked by mechanical erosion in dust deposited in eastern Asia and the Pacific Ocean.