184 resultados para chimera hosta
Resumo:
The Armadillo family catenin proteins function in multiple capacities including cadherin-mediated cell-cell adhesion and nuclear signaling. The newest catenin, p120 catenin, differs from the classical catenins and binds to the membrane-proximal domain of cadherins. Recently, a novel transcription factor Kaiso was found to interact with p120 catenin, suggesting that p120 catenin also possesses a nuclear function. We isolated the Xenopus homolog of Kaiso, XKaiso, from a Xenopus stage 17 cDNA library. XKaiso contains an amino-terminal BTB/POZ domain and three carboxyl-terminal zinc fingers. The XKaiso transcript was present maternally and expressed throughout early embryonic development. XKaiso's spatial expression was defined via in situ hybridization and was found localized to the brain, eye, ear, branchial arches, and spinal cord. Co-immunoprecipitation of Xenopus p120 catenin and XKaiso demonstrated their mutual association, while related experiments employing differentially epitope-tagged XKaiso constructs suggest that XKaiso also self-associates. On the functional level, reporter assays employing a chimera of XKaiso fused to the GAL4 DNA binding domain indicated that XKaiso is a transcriptional repressor. To better understand the significance of the Kaiso-p120 catenin complex in vertebrate development, Kaiso knock-down experiments were undertaken, and the modulatory role of p120 catenin in Kaiso function examined during Xenopus development. Using morpholino antisense oligonucleotides to block translation of XKaiso, XKaiso was found to be essential for Xenopus gastrulation, being required for correct morphogenetic movements in early embryogenesis. Molecular marker analyses indicated that one target gene of the Wnt/β-catenin pathway, Siamois, is significantly increased in embryos depleted for XKaiso, while other dorsal, ventral, and mesodermal cell fate markers were unaltered. In addition, the non-canonical Wnt-11, known to participate in planar cell polarity/convergent extension processes, was significantly upregulated following depletion of XKaiso. Such increased Wnt-11 expression likely contributed to the XKaiso depletion phenotype because a dominant negative form of Wnt-11 or of the downstream effector Dishevelled partially rescued the observed gastrulation defects. These results show that XKaiso is essential for proper gastrulation movements, resulting at least in part from its modulation of non-canonical Wnt signaling. The significance of the XKaiso-p120 catenin interaction has yet to be determined, but appears to include a role in modulating genes promoting canonical and non-canonical Wnt signals. ^
Resumo:
DNA extraction was carried out as described on the MICROBIS project pages (http://icomm.mbl.edu/microbis ) using a commercially available extraction kit. We amplified the hypervariable regions V4-V6 of archaeal and bacterial 16S rRNA genes using PCR and several sets of forward and reverse primers (http://vamps.mbl.edu/resources/primers.php). Massively parallel tag sequencing of the PCR products was carried out on a 454 Life Sciences GS FLX sequencer at Marine Biological Laboratory, Woods Hole, MA, following the same experimental conditions for all samples. Sequence reads were submitted to a rigorous quality control procedure based on mothur v30 (doi:10.1128/AEM.01541-09) including denoising of the flow grams using an algorithm based on PyroNoise (doi:10.1038/nmeth.1361), removal of PCR errors and a chimera check using uchime (doi:10.1093/bioinformatics/btr381). The reads were taxonomically assigned according to the SILVA taxonomy (SSURef v119, 07-2014; doi:10.1093/nar/gks1219) implemented in mothur and clustered at 98% ribosomal RNA gene V4-V6 sequence identity. V4-V6 amplicon sequence abundance tables were standardized to account for unequal sampling effort using 1000 (Archaea) and 2300 (Bacteria) randomly chosen sequences without replacement using mothur and then used to calculate inverse Simpson diversity indices and Chao1 richness (doi:10.2307/4615964). Bray-Curtis dissimilarities (doi:10.2307/1942268) between all samples were calculated and used for 2-dimensional non metric multidimensional scaling (NMDS) ordinations with 20 random starts (doi:10.1007/BF02289694). Stress values below 0.2 indicated that the multidimensional dataset was well represented by the 2D ordination. NMDS ordinations were compared and tested using Procrustes correlation analysis (doi:10.1007/BF02291478). All analyses were carried out with the R statistical environment and the packages vegan (available at: http://cran.r-project.org/package=vegan), labdsv (available at: http://cran.r-project.org/package=labdsv), as well as with custom R scripts. Operational taxonomic units at 98% sequence identity (OTU0.03) that occurred only once in the whole dataset were termed absolute single sequence OTUs (SSOabs; doi:10.1038/ismej.2011.132). OTU0.03 sequences that occurred only once in at least one sample, but may occur more often in other samples were termed relative single sequence OTUs (SSOrel). SSOrel are particularly interesting for community ecology, since they comprise rare organisms that might become abundant when conditions change.16S rRNA amplicons and metagenomic reads have been stored in the sequence read archive under SRA project accession number SRP042162.
Resumo:
Although infection by primary HIV type 1 (HIV-1) isolates normally requires the functional interaction of the viral envelope protein with both CD4 and the CCR-5 coreceptor, a subset of such isolates also are able to use the distinct CCR-3 receptor. By analyzing the ability of a series of wild-type and chimeric HIV-1 envelope proteins to mediate CCR-3-dependent infection, we have determined that CCR-3 tropism maps to the V1 and V2 variable region of envelope. Although substitution of the V1/V2 region of a CCR-3 tropic envelope into the context of a CCR-5 tropic envelope is both necessary and sufficient to confer CCR-3 tropism, this same substitution has no phenotypic effect when inserted into a CXCR-4 tropic HIV-1 envelope context. However, this latter chimera acquires both CCR-3 and CCR-5 tropism when a CCR-5 tropic V3 loop sequence also is introduced. These data demonstrate that the V1/2 region of envelope can, like the V3 loop region, encode a particular coreceptor requirement and suggest that a functional envelope:CCR-3 interaction may depend on the cooperative interaction of CCR-3 with both the V1/V2 and the V3 region of envelope.
Resumo:
We have succeeded in constructing a stable full-length cDNA clone of strain H77 (genotype 1a) of hepatitis C virus (HCV). We devised a cassette vector with fixed 5′ and 3′ termini and constructed multiple full-length cDNA clones of H77 in a single step by cloning of the entire ORF, which was amplified by long reverse transcriptase–PCR, directly into this vector. The infectivity of two complete full-length cDNA clones was tested by the direct intrahepatic injection of a chimpanzee with RNA transcripts. However, we found no evidence for HCV replication. Sequence analysis of these and 16 additional full-length clones revealed that seven clones were defective for polyprotein synthesis, and the remaining nine clones had 6–28 amino acid mutations in the predicted polyprotein compared with the consensus sequence of H77. Next, we constructed a consensus chimera from four of the full-length cDNA clones with just two ligation steps. Injection of RNA transcripts from this consensus clone into the liver of a chimpanzee resulted in viral replication. The sequence of the virus recovered from the chimpanzee was identical to that of the injected RNA transcripts. This stable infectious molecular clone should be an important tool for developing a better understanding of the molecular biology and pathogenesis of HCV.
Resumo:
Leptin (OB), an adipocyte-secreted circulating hormone, and its receptor (OB-R) are key components of an endocrine loop that regulates mammalian body weight. In this report we have analyzed signal transduction activities of OB-R containing the fatty mutation [OB-R(fa)], a single amino acid substitution at position 269 (Gln → Pro) in the OB-R extracellular domain that results in the obese phenotype of the fatty rat. We find that this mutant receptor exhibits both ligand-independent transcriptional activation via interleukin 6 and hematopoietin receptor response elements and ligand-independent activation of signal transducer and activator of transcription (STAT) proteins 1 and 3. However, OB-R(fa) is unable to constitutively activate STAT5B and is highly impaired for ligand induced activation of STAT5B compared with OB-R(wt). Introduction of the fatty mutation into a OB-R/G-CSF-R chimera generates a receptor with constitutive character that is similar but distinct from that of OB-R(fa). Constitutive mutant OB-R(fa) receptor signaling is repressed by coexpression of OB-R(wt). The implications of an extracellular domain amino acid substitution generating a cytokine receptor with a partially constitutive phenotype are discussed both in terms of the mechanism of OB-R triggering and the biology of the fatty rat.
Resumo:
Novel restriction enzymes can be created by fusing the nuclease domain of FokI endonuclease with defined DNA binding domains. Recently, we have characterized a domain (Zα) from the N-terminal region of human double-stranded RNA adenosine deaminase (hADAR1), which binds the Z-conformation with high specificity. Here we report creation of a conformation-specific endonuclease, Zα nuclease, which is a chimera of Zα and FokI nuclease. Purified Zα nuclease cleaves negatively supercoiled plasmids only when they contain a Z-DNA forming insert, such as (dC-dG)13. The precise location of the cleavage sites was determined by primer extension. Cutting has been mapped to the edge of the B-Z junction, suggesting that Zα nuclease binds within the Z-DNA insert, but cleaves in the nearby B-DNA, by using a mechanism similar to type IIs restriction enzymes. These data show that Zα binds Z-DNA in an environment similar to that in a cell. Zα nuclease, a structure-specific restriction enzyme, may be a useful tool for further study of the biological role of Z-DNA.
Resumo:
Cytochrome P450 2C2 is a resident endoplasmic reticulum (ER) membrane protein that is excluded from the recycling pathway and contains redundant retention functions in its N-terminal transmembrane signal/anchor sequence and its large, cytoplasmic domain. Unlike some ER resident proteins, cytochrome P450 2C2 does not contain any known retention/retrieval signals. One hypothesis to explain exclusion of resident ER proteins from the transport pathway is the formation of networks by interaction with other proteins that immobilize the proteins and are incompatible with packaging into the transport vesicles. To determine the mobility of cytochrome P450 in the ER membrane, chimeric proteins of either cytochrome P450 2C2, its catalytic domain, or the cytochrome P450 2C1 N-terminal signal/anchor sequence fused to green fluorescent protein (GFP) were expressed in transiently transfected COS1 cells. The laurate hydroxylase activities of cytochrome P450 2C2 or the catalytic domain with GFP fused to the C terminus were similar to the native enzyme. The mobilities of the proteins in the membrane were determined by recovery of fluorescence after photobleaching. Diffusion coefficients for all P450 chimeras were similar, ranging from 2.6 to 6.2 × 10−10 cm2/s. A coefficient only slightly larger (7.1 × 10−10 cm2/s) was determined for a GFP chimera that contained a C-terminal dilysine ER retention signal and entered the recycling pathway. These data indicate that exclusion of cytochrome P450 from the recycling pathway is not mediated by immobilization in large protein complexes.
Resumo:
Myosin II generates force for the division of eukaryotic cells. The molecular basis of the spatial and temporal localization of myosin II to the cleavage furrow is unknown, although models often imply that interaction between myosin II and actin filaments is essential. We examined the localization of a chimeric protein that consists of the green fluorescent protein fused to the N terminus of truncated myosin II heavy chain in Dictyostelium cells. This chimera is missing the myosin II motor domain, and it does not bind actin filaments. Surprisingly, it still localizes to the cleavage furrow region during cytokinesis. These results indicate that myosin II localization during cytokinesis occurs through a mechanism that does not require it to be the force-generating element or to interact with actin filaments directly.
Resumo:
The irreversible proteolytic mechanism by which protease-activated receptor-1 (PAR1), the G protein-coupled receptor (GPCR) for thrombin, is activated raises the question of how it is shut off. Like classic GPCRs, activated PAR1 is rapidly phosphorylated and internalized, but unlike classic GPCRs, which recycle, internalized PAR1 is sorted to lysosomes. A chimeric PAR1 bearing the substance P receptor’s cytoplasmic carboxyl tail sequestered and recycled like wild-type substance P receptor. In cells expressing this chimera, signaling in response to the PAR1-activating peptide SFLLRN ceased as expected upon removal of this agonist. Strikingly, however, when the chimera was activated proteolytically by thrombin, signaling persisted even after thrombin was removed. This persistent signaling was apparently due to “resignaling” by previously activated receptors that had internalized and recycled back to the cell surface. Thus the cytoplasmic carboxyl tail of PAR1 specifies an intracellular sorting pattern that is linked to its signaling properties. In striking contrast to most GPCRs, sorting of activated PAR1 to lysosomes rather than recycling is critical for terminating PAR1 signaling—a trafficking solution to a signaling problem.
Resumo:
The Saccharomyces cerevisiae Doa4 deubiquitinating enzyme is required for the rapid degradation of protein substrates of the ubiquitin–proteasome pathway. Previous work suggested that Doa4 functions late in the pathway, possibly by deubiquitinating (poly)-ubiquitin-substrate intermediates associated with the 26S proteasome. We now provide evidence for physical and functional interaction between Doa4 and the proteasome. Genetic interaction is indicated by the mutual enhancement of defects associated with a deletion of DOA4 or a proteasome mutation when the two mutations are combined. Physical association of Doa4 and the proteasome was investigated with a new yeast 26S proteasome purification procedure, by which we find that a sizeable fraction of Doa4 copurifies with the protease. Another yeast deubiquitinating enzyme, Ubp5, which is related in sequence to Doa4 but cannot substitute for it even when overproduced, does not associate with the proteasome. DOA4-UBP5 chimeras were made by a novel PCR/yeast recombination method and used to identify an N-terminal 310-residue domain of Doa4 that, when appended to the catalytic domain of Ubp5, conferred Doa4 function, consistent with Ubp enzymes having a modular architecture. Unlike Ubp5, a functional Doa4-Ubp5 chimera associates with the proteasome, suggesting that proteasome binding is important for Doa4 function. Together, these data support a model in which Doa4 promotes proteolysis through removal of ubiquitin from proteolytic intermediates on the proteasome before or after initiation of substrate breakdown.
Resumo:
The endothelial-derived G-protein–coupled receptor EDG-1 is a high-affinity receptor for the bioactive lipid mediator sphingosine-1-phosphate (SPP). In the present study, we constructed the EDG-1–green fluorescent protein (GFP) chimera to examine the dynamics and subcellular localization of SPP–EDG-1 interaction. SPP binds to EDG-1–GFP and transduces intracellular signals in a manner indistinguishable from that seen with the wild-type receptor. Human embryonic kidney 293 cells stably transfected with the EDG-1–GFP cDNA expressed the receptor primarily on the plasma membrane. Exogenous SPP treatment, in a dose-dependent manner, induced receptor translocation to perinuclear vesicles with a τ1/2 of ∼15 min. The EDG-1–GFP–containing vesicles are distinct from mitochondria but colocalize in part with endocytic vesicles and lysosomes. Neither the low-affinity agonist lysophosphatidic acid nor other sphingolipids, ceramide, ceramide-1-phosphate, or sphingosylphosphorylcholine, influenced receptor trafficking. Receptor internalization was completely inhibited by truncation of the C terminus. After SPP washout, EDG-1–GFP recycles back to the plasma membrane with a τ1/2 of ∼30 min. We conclude that the high-affinity ligand SPP specifically induces the reversible trafficking of EDG-1 via the endosomal pathway and that the C-terminal intracellular domain of the receptor is critical for this process.
Resumo:
Binding of dimeric immunoglobulin (Ig)A to the polymeric Ig receptor (pIgR) stimulates transcytosis of pIgR across epithelial cells. Through the generation of a series of pIgR chimeric constructs, we have tested the ability of ligand to promote receptor dimerization and the subsequent role of receptor dimerization on its intracellular trafficking. Using the cytoplasmic domain of the T cell receptor-ζ chain as a sensitive indicator of receptor oligomerization, we show that a pIgR:ζ chimeric receptor expressed in Jurkat cells initiates a ζ-specific signal transduction cascade when exposed to dimeric or tetrameric IgA, but not when exposed to monomeric IgA. In addition, we replaced the pIgR’s transmembrane domain with that of glycophorin A to force dimerization or with a mutant glycophorin transmembrane domain to prevent dimerization. Forcing dimerization stimulated transcytosis of the chimera, whereas preventing dimerization abolished ligand-stimulated transcytosis. We conclude that binding of dimeric IgA to the pIgR induces its dimerization and that this dimerization is necessary and sufficient to stimulate pIgR transcytosis.
Resumo:
RhoG is a member of the Rho family of GTPases that shares 72% and 62% sequence identity with Rac1 and Cdc42Hs, respectively. We have expressed mutant RhoG proteins fused to the green fluorescent protein and analyzed subsequent changes in cell surface morphology and modifications of cytoskeletal structures. In rat and mouse fibroblasts, green fluorescent protein chimera and endogenous RhoG proteins colocalize according to a tubular cytoplasmic pattern, with perinuclear accumulation and local concentration at the plasma membrane. Constitutively active RhoG proteins produce morphological and cytoskeletal changes similar to those elicited by a simultaneous activation of Rac1 and Cdc42Hs, i.e., the formation of ruffles, lamellipodia, filopodia, and partial loss of stress fibers. In addition, RhoG and Cdc42Hs promote the formation of microvilli at the cell apical membrane. RhoG-dependent events are not mediated through a direct interaction with Rac1 and Cdc42Hs targets such as PAK-1, POR1, or WASP proteins but require endogenous Rac1 and Cdc42Hs activities: coexpression of a dominant negative Rac1 impairs membrane ruffling and lamellipodia but not filopodia or microvilli formation. Conversely, coexpression of a dominant negative Cdc42Hs only blocks microvilli and filopodia, but not membrane ruffling and lamellipodia. Microtubule depolymerization upon nocodazole treatment leads to a loss of RhoG protein from the cell periphery associated with a reversal of the RhoG phenotype, whereas PDGF or bradykinin stimulation of nocodazole-treated cells could still promote Rac1- and Cdc42Hs-dependent cytoskeletal reorganization. Therefore, our data demonstrate that RhoG controls a pathway that requires the microtubule network and activates Rac1 and Cdc42Hs independently of their growth factor signaling pathways.
Resumo:
Epithelio–mesenchymal interactions during kidney organogenesis are disrupted in integrin α8β1-deficient mice. However, the known ligands for integrin α8β1—fibronectin, vitronectin, and tenascin-C—are not appropriately localized to mediate all α8β1 functions in the kidney. Using a method of general utility for determining the distribution of unknown integrin ligands in situ and biochemical characterization of these ligands, we identified osteopontin (OPN) as a ligand for α8β1. We have coexpressed the extracellular domains of the mouse α8 and β1 integrin subunits as a soluble heterodimer with one subunit fused to alkaline phosphatase (AP) and have used the α8β1-AP chimera as a histochemical reagent on sections of mouse embryos. Ligand localization with α8β1-AP in developing bone and kidney was observed to be overlapping with the distribution of OPN. In “far Western” blots of mouse embryonic protein extracts, bands were detected with sizes corresponding to fibronectin, vitronectin, and unknown proteins, one of which was identical to the size of OPN. In a solid-phase binding assay we demonstrated that purified OPN binds specifically to α8β1-AP. Cell adhesion assays using K562 cells expressing α8β1 were used to confirm this result. Together with a recent report that anti-OPN antibodies disrupt kidney morphogenesis, our results suggest that interactions between OPN and integrin α8β1 may help regulate kidney development and other morphogenetic processes.
Resumo:
The amino acid sequence requirements of the transmembrane (TM) domain and cytoplasmic tail (CT) of the hemagglutinin (HA) of influenza virus in membrane fusion have been investigated. Fusion properties of wild-type HA were compared with those of chimeras consisting of the ectodomain of HA and the TM domain and/or CT of polyimmunoglobulin receptor, a nonviral integral membrane protein. The presence of a CT was not required for fusion. But when a TM domain and CT were present, fusion activity was greater when they were derived from the same protein than derived from different proteins. In fact, the chimera with a TM domain of HA and truncated CT of polyimmunoglobulin receptor did not support full fusion, indicating that the two regions are not functionally independent. Despite the fact that there is wide latitude in the sequence of the TM domain that supports fusion, a point mutation of a semiconserved residue within the TM domain of HA inhibited fusion. The ability of a foreign TM domain to support fusion contradicts the hypothesis that a pore is composed solely of fusion proteins and supports the theory that the TM domain creates fusion pores after a stage of hemifusion has been achieved.