959 resultados para characterization and crystallization


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work explores the electrical transport and UV photoresponse properties of GaN nanodots (NDs) grown by molecular beam epitaxy (MBE). Single-crystalline wurtzite structure of GaN NDs is verified by X-ray diffraction and transmission electron microscopy (TEM). The interdigitated electrode pattern was created and current-voltage (I-V) characteristics of GaN NDs were studied in a metal-semiconductor-metal configuration. Dark I-V characteristics of lateral grown GaN NDs obeyed the Frenkel-Poole emission model, and the UV response of the device was stable and reproducible with on/off. The responsivity of the detectors is found to be 330 A/W with an external quantum efficiency of 1100%. (C) 2012 The Japan Society of Applied Physics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of 5-bromo-2-(3,5-diaryl-4,5-dihydro-1H-Pyrazol-1-yl)pyrimidine were prepared under conventional heating as well as microwave reaction condition. The newly synthesized compounds were characterized on the basis of elemental, spectral and single crystal X-ray studies. These new compounds were screened for their antioxidant, anti-inflammatory and analgesic activities. Some of these compounds exhibited potent biological activities compared to the standard drug. (C) 2012 Elsevier Masson SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of Pr3+ (1-9 mol%) doped CdSiO3 nanophosphors have been prepared for the first time by a low temperature solution combustion method using oxalyldihydrizide (ODH) as a fuel. The final product was characterized by Powder X-ray diffraction (PXRD), Fourier Transform Infrared Spectroscopy (FTIR), scanning electron microscopy (SEM), and UV-Vis spectroscopy. The average crystallite size was calculated using Debye-Scherrer's formula and Williamson-Hall (W-H) plots and found to be in the range 31-37 nm. The optical energy band gap (E-g) of undoped for Pr3+ doped samples were estimated from Tauc relation which varies from 5.15-5.36 eV. Thermoluminescence (TL) properties of Pr3+ doped CdSiO3 nanophosphor has been investigated using gamma-irradiation in the dose range 1-6 kGy at a heating rate of 5 degrees C s(-1). The phosphor shows a well resolved glow peak at similar to 171 degrees C along with shouldered peak at 223 degrees C in the higher temperature side. It is observed that TL intensity increase with increase of Pr3+ concentration. Further, the TL intensity at 171 degrees C is found to be increase linearly with increase in gamma-dose which is highly useful in radiation dosimetry. The kinetic parameters such as activation energy (E), frequency factor (s) and order of kinetics was estimated by Luschiks method and the results are discussed. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Owing to its favourable physical, chemical and rheological properties, densely compacted bentonite or bentonite-sand mix is considered as a suitable buffer material in deep geological repositories to store high level nuclear waste. Iodine-129 is one of the significant nuclides in the high level waste owing to its long half life and poor sorption onto most geologic media. Bentonite by virtue of negatively charged surface has negligible affinity to retain iodide ions. As organo-bentonites are known to retain iodide ions, the present study characterizes hexadecylpyridinium chloride (HDPyCl.H2O) treated bentonite from Barmer India (referred as HDPy+B) for physico-chemical properties, engineering properties and the iodide adsorption behavior of the organo clay. Batch experiments revealed that HDPy+ ions are largely retained (94 % retention) via cation exchange; the ion-exchange process neutralizes the negative surface charge and bridges clay particles leading to reduction in Atterberg limits, clay content and sediment volume. The organo clay retains iodide by Coulombic attraction (at primary sites) and anion exchange (at secondary sites). The free-energy change (Delta G (o) = -25.5 kJ/mol) value indicated that iodide retention by organo clay is favored physical adsorption process. Iodide adsorption capacity of organo clay decreased significantly (85-100 %) on dilution with 50-80 % bentonite. On the other hand, dilution of bentonite with 50 % organo clay caused 58 % reduction in swell potential and 21 % reduction in swell pressure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report here the synthesis and characterization of a few phenolate-based ligands bearing tert- amino substituent and their Zn(II) and Cu(II) metal complexes. Three mono/binuclear Zn(II) and Cu(II) complexes Zn(L1)(H2O)].CH3OH.H2O (1) (H (2) L1 = 6,6(')-(((2-dimethylamino)ethylazanediyl)bis(methylene))bis(2, 4-dimethylphenol), Zn-2(L2)(2)] (2) (H (2) L2 = 2,2(')-(((2-dimethylamino)ethyl)azanediyl)bis(methylene)bis(4- methylphenol) and Cu-2(L3)(2).CH2 Cl-2] (3) (H (2) L3 = (6,6(')-(((2-(diethylamino)ethyl)azanediyl)bis(methylene)) bis(methylene))bis(2,4-dimethylphenol) were synthesized by using three symmetrical tetradendate ligands containing N2O2 donor sites. These complexes are characterized by a variety of techniques including; elemental analysis, mass spectrometry, H-1, C-13 NMR spectroscopic and single crystal X-ray analysis. The new complexes have been tested for the phosphotriesterase (PTE) activity with the help of P-31 NMR spectroscopy. The P-31 NMR studies show that mononuclear complex Zn(L1)(H2O)].CH3OH.H2O (1) can hydrolyse the phosphotriester i.e., p-nitrophenyl diphenylphosphate (PNPDPP), more efficiently than the binuclear complexes Zn-2(L2)(2)] (2) and Cu-2(L3)(2).CH2Cl2] (3). The mononuclear Zn(II) complex (1) having one coordinated water molecule exhibits significant PTE activity which may be due to the generation of a Zn(II)-bound hydroxide ion during the hydrolysis reactions in CHES buffer at pH 9.0.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly{(N,N-(dimethylamino)ethyl methacrylate]-co-(methyl methacrylate)} copolymers of various compositions were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization at 70 degrees C in N,N-dimethylformamide. The polymer molecular weights and molecular weight distributions were obtained from size exclusion chromatography, and they indicated the controlled nature of the RAFT polymerizations; the polydispersity indices are in the range 1.11.3. The reactivity ratios of N,N-(dimethylamino)ethyl methacrylate (DMAEMA) and methyl methacrylate (MMA) (rDMAEMA = 0.925 and rMMA = 0.854) were computed by the extended KelenTudos method at high conversions, using compositions obtained from 1H NMR. The pH- and temperature-sensitive behaviour were studied in aqueous solution to confirm dual responsiveness of these copolymers. The thermal properties of the copolymers with various compositions were investigated by differential scanning calorimetry and thermogravimetric analysis. The kinetics of thermal degradation were determined by Friedmann and Chang techniques to evaluate various parameters such as the activation energy, the order and the frequency factor. (c) 2012 Society of Chemical Industry

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The syntheses and characterization of some new mixed-ligand nickel(II) complexes {Ni(L-1)(PPh3)] (1), Ni(L-1)(Py)] (2), Ni(L-2)(PPh3)]center dot DMSO (3), Ni(L-2)(Imz)] (4), Ni(L-3)(4-pic)] (5) and RNi(L-3))(2)(mu-4,4'-byp)]center dot 2DMSO (6)1 of three selected thiosemicarbazones the 4-(p-X-phenyl)thiosemicarbazones of salicylaldehyde) (H2L1-3) (A, Scheme 1) are described in the present study, differing in the inductive effect of the substituent X (X = F, Br and OCH3), in order to observe its influence, if any, on the redox potentials and biological activity of the complexes. All the synthesized ligands and the metal complexes were successfully characterized by elemental analysis, IR, UV-Vis, NMR spectroscopy and cyclic voltammetry. The molecular structures of four mononuclear (1-3 and 5) and one dinuclear (6) Ni(II) complex have been determined by X-ray crystallography. The complexes have been screened for their antibacterial activity against Escherichia coli and Bacillus. The minimum inhibitory concentrations of these complexes and their antibacterial activities indicate that compound 4 is the potential lead molecule for drug designing. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrodeposition of Co-W alloy coatings has been carried out with DC and PC using gluconate bath at different pH. These coatings are characterized for their structure, morphology and chemical composition by X-ray diffraction, field emission scanning electron microscopy, differential scanning calorimetry and X-ray photoelectron spectroscopy (XPS). Alloy coatings plated at pH8 are crystalline, whereas coatings electrodeposited at pH5 are nanocrystalline in nature. XPS studies have demonstrated that as-deposited alloy plated at pH8 with DC contain only Co2+ and W6+ species, whereas that alloy plated at pH5 has significant amount of Co-0 and W-0 along with Co2+ and W6+ species. Again, Co2+ and W6+ are main species in all as-deposited PC plated alloys in both pH. Co-0 concentration increases upon successive sputtering of all alloy coatings. In contrast, mainly W6+ species is detected in the following layers of all alloys plated with PC. Alloys plated at pH5 show higher microhardness compared to their pH8 counterparts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural characterizations using XRD and C-13 NMR spectroscopy of two rodlike mesogens consisting of (i) three phenyl ring core with a polar cyano terminal and (ii) four phenyl ring core with flexible dodecyl terminal chain are presented. The three-ring-core mesogen with cyano terminal exhibits enantiotropic smectic A phase while the four-ring mesogen reveals polymesomorphism and shows enantiotropic nematic, smectic C, and tilted hexatic phases. The molecular organization in the three-ring mesogen is found to be partial bilayer smectic Ad type, and the interdigitation of the molecules in the neighboring layers is attributed to the presence of the polar terminal group. For the four-ring mesogen, the XRD results confirm the existence of the smectic C and the tilted hexatic mesophases. A thermal variation of the layer spacing across the smectic C phase followed by a discrete jump at the transition to the tilted hexatic phase is also observed. The tilt angles have been estimated to be about 45 degrees in the smectic C phase and about 40 degrees in tilted hexatic phase. C-13 NMR results indicate that in the mesophase the molecules are aligned parallel to the magnetic field. From the C-13-H-1 dipolar couplings determined from the 2D experiments, the overall order parameter for the three-ring mesogen in its smectic A phase has been estimated to be 0.72 while values ranging from 0.88 to 0.44 have been obtained for the four-ring mesogen as it passes from the tilted hexatic to the nematic phase. The orientations of the different rings of the core unit with respect to each other and also with respect to the long axis of the molecule have also been obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three samples of multiwall carbon nanotubes (MWCNT) TF200, TF150 and TF100, where T and F stand for toluene and ferrocene respectively, and numeral denotes the amount (mg) of ferrocene] filled with iron-nanoparticles (Fe-NPs) of different aspect ratios are grown by chemical vapor deposition of toluene-ferrocene mixture. Energy dispersive X-ray analysis shows a systematic variation in the intensities of peak corresponding to Fe, indicating that Fe is present in different amounts in the three MWCNT samples. The lengths of Fe-NPs lie in the range of 200-250; 80-120; and 30-40 nm for TF200, TF150 and TF100, respectively, as estimated statistically from transmission electron microscopy micrographs. However, the diameter of the encapsulated Fe-NPs does not vary significantly for different samples and is 20-30 nm for all samples. Hysteresis loop measurements on these MWCNT samples were done at 10, 150 and 300 K up to an applied field of 1.5 T. At 10 K, values of coercivity are 2584, 2315, and 2251 Oe for TF200, TF150 and TF100 respectively. This is attributed to the strong shape anisotropy of the Fe-NPs and significant dipolar interactions between them. Further, M-H loops reveal that saturation magnetization of TF200 is almost four times that of TF100 at all temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crystallization-induced phase separation and segmental relaxations in poly(vinylidene fluoride)/poly(methyl methacrylate) (PVDF/PMMA) blends was systematically investigated by melt-rheology and broadband dielectric spectroscopy in the presence of multiwall carbon nanotubes (MWNTs). Different functionalized MWNTs (amine, -NH2; acid, -COOH) were incorporated in the blends by melt-mixing above the melting temperature of PVDF, where the blends are miscible, and the crystallization induced phase separation was probed in situ by shear rheology. Interestingly, only -NH2 functionalized MWNTs (a-MWNTs) aided in the formation of beta-phase (trans-trans) crystals in PVDF, whereas both the neat blends and the blends with -COOH functionalized MWNTs (c-MWNTs) showed only alpha-phase (trans-gauche-trans-gauche') crystals as inferred from wide-angle X-ray diffraction (WXRD) and Fourier transform infrared (FTIR). Furthermore, blends with only a-MWNTs facilitated in heterogeneous nucleation in the blends manifesting in an increase in the calorimetric crystallization temperature and hence, augmented the theologically determined crystallintion induced phase separation temperature. The dielectric relaxations associated with the crystalline phase of PVDF (alpha(c)) was completely absent in the blends with a-MWNTs in contrast to neat blends and the blends with c-MWNTs in the dielectric loss spectra. The relaxations in the blends investigated here appeared to follow Havriliak-Negami (HN) empirical equations, and, more interestingly, the dynamic heterogeneity in the system could be mapped by an extra relaxation at higher frequency at the crystallization-induced phase separation temperature. The mean relaxation time (tau(HN)) was evaluated and observed to be delayed in the presence of MWNTs in the blends, more prominently in the case of blends with a-MWNTs. The latter also showed a significant increase in the dielectric relaxation strength (Delta epsilon). Electron microscopy and selective etching was used to confirm the localization of MWNTs in the amorphous phases of the interspherulitic regions as observed from scanning electron microscopy (SEM). The evolved crystalline morphology, during crystallization-induced phase separation, was observed to have a strong influence on the charge transport processes in the blends. These observations were further supported by the specific interactions (like dipole induced dipole interaction) between a-MWNTs and PVDF, as inferred from FTIR, and the differences in the crystalline morphology as observed from WXRD and polarized optical microscopy (POM).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amorphous thin chalcogenide Si15Te85-xGex films (x: 5, 9, 10, 11, 12) are prepared by flash evaporation and the temperature dependence of resistance of these films has been studied in the temperature range 25-250 degrees C. All the compositions show a linear variation of resistance in this temperature range. Apart from the linear variation, a sharp reduction in resistance at one or at two distinct temperatures (T-TR1/T-TR2) is seen. Thin films annealed at these temperatures, when subjected to X-ray diffraction studies suggest that the dominant crystalline phase at T-TR1 and at T-TR2 is the same and the two dips are associated with varying levels of crystallization. This is also reflected in the atomic force microscopic (AFM) study. Further, the resistance of these two phases shows no drift when the films are annealed for varying lengths of time (10 min to 120 min) suggesting the stability of the phases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanosheets of MoO3 that consist of only a few layers have been prepared by using four methods, including the oxidation of MoS2 nanosheets, intercalation with LiBr, and ultrasonication. These nanosheets have been characterized by atomic force microscopy and other techniques. Besides showing a blue-shift of the optical absorption band compared to the bulk sample, few-layer MoO3 exhibits enhanced photocatalytic activity. In combination with a borocarbonitride, few-layer MoO3 shows good performance characteristics as a supercapacitor electrode.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bi2Zr2O7 was synthesized via a facile solution combustion method. Two different fuels, urea and tartaric acid were used in the synthesis, which resulted in Bi2Zr2O7 crystals with different band gaps and surface areas. The structure has been determined by Rietveld refinement followed by the difference Fourier technique. The compound crystallizes in the space group Fm (3) over barm. The photocatalytic degradation of two dyes was carried out under solar radiation. Bi2Zr2O7 prepared using urea as the fuel exhibits a higher photocatalytic activity than the compound prepared using tartaric acid and comparable activity to that of commercial Evonik P-25 TiO2. It is suggested that this is due to the oxygen vacancies occurring in the two cases, the urea based compound has an occupancy of 0.216, whereas the tartaric acid based synthesis shows disorder in the oxygen position amounting to a small number of oxygen vacancies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the synthesis of Pr6O11 microspheres self-assembled from ultra-small nanocrystals formed by the microwave irradiation of a solution of a salt of Pr in ethylene glycol (EG). The as-prepared product consists of microspheres measuring 200 to 500 nm in diameter and made of <5 nm nano-crystallites. The surface of these microspheres/nanocrystals is covered/capped with an organic layer of ethylene glycol as shown by TEM analysis and confirmed by IR spectroscopy measurements. The as-prepared product shows blue-green emission under excitation, which changes to orange-red when the product is annealed in air at 600 degrees C for 2 h. This change in luminescence behaviour can be attributed to presence of ethylene glycol layer in the as-prepared product. The samples were characterized by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), IR Spectroscopy (IR), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). (C) 2013 Elsevier B.V. All rights reserved.