914 resultados para changing management
Resumo:
Thermal management of distributed electronics similar to data centers is studied using a bi-disperse porous medium (BDPM) approach. The BDPM channel comprises heat generating micro-porous square blocks, separated by macro-pores. Laminar forced convection cooling fluid of Pr = 0.7 saturates both the micro- and macro-pores. Bi-dispersion effect is induced by varying the macro-pore volume fraction phi(E), and by changing the number of porous blocks N-2, both representing re-distribution of the electronics. When 0.2 <= phi(E) <= 0.86, the heat transfer No is enhanced twice (from similar to 550 to similar to 1100) while the pressure drop Delta p* reduces almost eightfold. For phi(E) < 0.5, No reduces quickly to reach a minimum at the mono -disperse porous medium (MDPM) limit (phi(E) -> 0). Compared to N-2 = 1 case, No for BDPM configuration is high when N-2 >> 1, i.e., the micro-porous blocks are many and well distributed. The Nu increase with Re changes from non-linear to linear as N-2 increases from 1 to 81, with corresponding insignificant pumping power increase. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A growing understanding of the ecology of seed dispersal has so far had little influence on conservation practice, while the needs of conservation practice have had little influence on seed dispersal research. Yet seed dispersal interacts decisively with the major drivers of biodiversity change in the 21st century: habitat fragmentation, overharvesting, biological invasions, and climate change. We synthesize current knowledge of the effects these drivers have on seed dispersal to identify research gaps and to show how this information can be used to improve conservation management. The drivers, either individually, or in combination, have changed the quantity, species composition, and spatial pattern of dispersed seeds in the majority of ecosystems worldwide, with inevitable consequences for species survival in a rapidly changing world. The natural history of seed dispersal is now well-understood in a range of landscapes worldwide. Only a few generalizations that have emerged are directly applicable to conservation management, however, because they are frequently confounded by site-specific and species-specific variation. Potentially synergistic interactions between disturbances are likely to exacerbate the negative impacts, but these are rarely investigated. We recommend that the conservation status of functionally unique dispersers be revised and that the conservation target for key seed dispersers should be a population size that maintains their ecological function, rather than merely the minimum viable population. Based on our analysis of conservation needs, seed dispersal research should be carried out at larger spatial scales in heterogenous landscapes, examining the simultaneous impacts of multiple drivers on community-wide seed dispersal networks. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Recommendations for changes to service provision and fisheries policy in support of poverty alleviation emerged recently in India from a process know as facilitated advocacy (see Case Study SI 2) that helped to negotiate and support a role for poor people and their service providers, to contribute to changes in services and policies. Two of the key recommendations to emerge from farmers and fishers, which were prioritized by Fisheries Departments, were to change the way that information is made available and to simplify procedures for accessing government schemes and bank loans. This case which identifies the origin of these recommendations to change the way that information is made available, shows how different models of the concept have emerged, and follows the development of the One-stop Aqua Shops (OAS) in the eastern Indian states of Jharkhand, Orissa and West Bengal, that represent a new and vital tier in communications in aquaculture. (12 p.)
Resumo:
This publication captures the outputs of a JISC infoNet conference held in February 2004 in the Royal York Hotel, York. The event was entitled ‘When Worlds Collide’ because it aimed to explore the cultural differences between the different communities involved in developing and supporting learning environments hence the event was promoted in collaboration with ALT and UCISA. We defined learning environment in the broadest sense to encompass all of the structures, systems and processes that impact on the learning experience. For many this is summed up in the term Managed Learning Environment (MLE) although others favour alternative terminologies. The event was thus unusual in that it brought together people, from learning and teaching, MIS, library, administrative and senior management backgrounds, that don’t often get the opportunity to network with one another.
Resumo:
The San Francisco Bay Conservation and Development Commission (BCDC), in continued partnership with the San Francisco Bay Long Term Management Strategies (LTMS) Agencies, is undertaking the development of a Regional Sediment Management Plan for the San Francisco Bay estuary and its watershed (estuary). Regional sediment management (RSM) is the integrated management of littoral, estuarine, and riverine sediments to achieve balanced and sustainable solutions to sediment related needs. Regional sediment management recognizes sediment as a resource. Sediment processes are important components of coastal and riverine systems that are integral to environmental and economic vitality. It relies on the context of the sediment system and forecasting the long-range effects of management actions when making local project decisions. In the San Francisco Bay estuary, the sediment system includes the Sacramento and San Joaquin delta, the bay, its local tributaries and the near shore coastal littoral cell. Sediment flows from the top of the watershed, much like water, to the coast, passing through rivers, marshes, and embayments on its way to the ocean. Like water, sediment is vital to these habitats and their inhabitants, providing nutrients and the building material for the habitat itself. When sediment erodes excessively or is impounded behind structures, the sediment system becomes imbalanced, and rivers become clogged or conversely, shorelines, wetlands and subtidal habitats erode. The sediment system continues to change in response both to natural processes and human activities such as climate change and shoreline development. Human activities that influence the sediment system include flood protection programs, watershed management, navigational dredging, aggregate mining, shoreline development, terrestrial, riverine, wetland, and subtidal habitat restoration, and beach nourishment. As observed by recent scientific analysis, the San Francisco Bay estuary system is changing from one that was sediment rich to one that is erosional. Such changes, in conjunction with increasing sea level rise due to climate change, require that the estuary sediment and sediment transport system be managed as a single unit. To better manage the system, its components, and human uses of the system, additional research and knowledge of the system is needed. Fortunately, new sediment science and modeling tools provide opportunities for a vastly improved understanding of the sediment system, predictive capabilities and analysis of potential individual and cumulative impacts of projects. As science informs management decisions, human activities and management strategies may need to be modified to protect and provide for existing and future infrastructure and ecosystem needs. (PDF contains 3 pages)
Resumo:
Coastal hazards such as flooding and erosion threaten many coastal communities and ecosystems. With documented increases in both storm frequency and intensity and projected acceleration of sea level rise, incorporating the impacts of climate change and variability into coastal vulnerability assessments is becoming a necessary, yet challenging task. We are developing an integrated approach to probabilistically incorporate the impacts of climate change into coastal vulnerability assessments via a multi-scale, multi-hazard methodology. By examining the combined hazards of episodic flooding/inundation and storm induced coastal change with chronic trends under a range of future climate change scenarios, a quantitative framework can be established to promote more sciencebased decision making in the coastal zone. Our focus here is on an initial application of our method in southern Oregon, United States. (PDF contains 5 pages)
Resumo:
4 p.
Resumo:
This thesis advances our physical understanding of the sensitivity of the hydrological cycle to global warming. Specifically, it focuses on changes in the longitudinal (zonal) variation of precipitation minus evaporation (P - E), which is predominantly controlled by planetary-scale stationary eddies. By studying idealized general circulation model (GCM) experiments with zonally varying boundary conditions, this thesis examines the mechanisms controlling the strength of stationary-eddy circulations and their role in the hydrological cycle. The overarching goal of this research is to understand the cause of changes in regional P - E with global warming. An understanding of such changes can be useful for impact studies focusing on water availability, ecosystem management, and flood risk.
Based on a moisture-budget analysis of ERA-Interim data, we establish an approximation for zonally anomalous P - E in terms of surface moisture content and stationary-eddy vertical motion in the lower troposphere. Part of the success of this approximation comes from our finding that transient-eddy moisture fluxes partially cancel the effect of stationary-eddy moisture advection, allowing divergent circulations to dominate the moisture budget. The lower-tropospheric vertical motion is related to horizontal motion in stationary eddies by Sverdrup and Ekman balance. These moisture- and vorticity-budget balances also hold in idealized and comprehensive GCM simulations across a range of climates.
By examining climate changes in the idealized and comprehensive GCM simulations, we are able to show the utility of the vertical motion P - E approximation for splitting changes in zonally anomalous P - E into thermodynamic and dynamic components. Shifts in divergent stationary-eddy circulations dominate changes in zonally anomalous P - E. This limits the local utility of the "wet gets wetter, dry gets drier” idea, where existing P - E patterns are amplified with warming by the increase in atmospheric moisture content, with atmospheric circulations held fixed. The increase in atmospheric moisture content manifests instead in an increase in the amplitude of the zonally anomalous hydrological cycle as measured by the zonal variance of P - E. However, dynamic changes, particularly the slowdown of divergent stationary-eddy circulations, limit the strengthening of the zonally anomalous hydrological cycle. In certain idealized cases, dynamic changes are even strong enough to reverse the tendency towards "wet gets wetter, dry gets drier” with warming.
Motivated by the importance of stationary-eddy vertical velocities in the moisture budget analysis, we examine controls on the amplitude of stationary eddies across a wide range of climates in an idealized GCM with simple topographic and ocean-heating zonal asymmetries. An analysis of the thermodynamic equation in the vicinity of topographic forcing reveals the importance of on-slope surface winds, the midlatitude isentropic slope, and latent heating in setting the amplitude of stationary waves. The response of stationary eddies to climate change is determined primarily by the strength of zonal surface winds hitting the mountain. The sensitivity of stationary-eddies to this surface forcing increases with climate change as the slope of midlatitude isentropes decreases. However, latent heating also plays an important role in damping the stationary-eddy response, and this damping becomes stronger with warming as the atmospheric moisture content increases. We find that the response of tropical overturning circulations forced by ocean heat-flux convergence is described by changes in the vertical structure of moist static energy and deep convection. This is used to derive simple scalings for the Walker circulation strength that capture the monotonic decrease with warming found in our idealized simulations.
Through the work of this thesis, the advances made in understanding the amplitude of stationary-waves in a changing climate can be directly applied to better understand and predict changes in the zonally anomalous hydrological cycle.
Resumo:
Video technology has been used as a tool in research for many years. However, its widespread use as a fisheries management tool has been limited due to its relatively high cost. This is changing as video technology becomes a household commodity now widely available throughout the world.
Resumo:
Southeast Bering Sea Carrying Capacity (SEBSCC, 1996–2002) was a NOAA Coastal Ocean Program project that investigated the marine ecosystem of the southeastern Bering Sea. SEBSCC was co-managed by the University of Alaska Fairbanks, NOAA Alaska Fisheries Science Center, and NOAA Pacific Marine Environmental Laboratory. Project goals were to understand the changing physical environment and its relationship to the biota of the region, to relate that understanding to natural variations in year-class strength of walleye pollock (Theragra chalcogramma), and to improve the flow of ecosystem information to fishery managers. In addition to SEBSCC, the Inner Front study (1997–2000), supported by the National Science Foundation (Prolonged Production and Trophic Transfer to Predators: Processes at the Inner Front of the S.E. Bering Sea), was active in the southeastern Bering Sea from 1997 to 1999. The SEBSCC and Inner Front studies were complementary. SEBSCC focused on the middle and outer shelf. Inner Front worked the middle and inner shelf. Collaboration between investigators in the two programs was strong, and the joint results yielded a substantially increased understanding of the regional ecosystem. SEBSCC focused on four central scientific issues: (1) How does climate variability influence the marine ecosystem of the Bering Sea? (2) What determines the timing, amount, and fate of primary and secondary production? (3) How do oceanographic conditions on the shelf influence distributions of fish and other species? (4) What limits the growth of fish populations on the eastern Bering Sea shelf? Underlying these broad questions was a narrower focus on walleye pollock, particularly a desire to understand ecological factors that affect year-class strength and the ability to predict the potential of a year class at the earliest possible time. The Inner Front program focused on the role of the structural front between the well-mixed waters of the coastal domain and the two-layer system of the middle domain. Of special interest was the potential for prolonged post-spring-bloom production at the front and its role in supporting upper trophic level organisms such as juvenile pollock and seabirds. Of concern to both programs was the role of interannual and longer-term variability in marine climates and their effects on the function of sub-arctic marine ecosystems and their ability to support upper trophic level organisms.