180 resultados para chalcogenide


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ge2Sb2Te5 (GST) films, one of the most suitable Chalcogenide alloys for Phase change Random Access Memory applications are studied for changes in sheet resistance, optical transmission, morphology and surface science by annealing at various transition temperatures. The crystallization leads to an increase of grain size and roughness in the films and the resistance changes to three orders of magnitude. Optical studies on GST films show distinct changes during phase transitions and the optical parameters are calculated. An increase of Tauc parameters B-1/2 indicates a reduction in disorder during phase transition. It is confirmed from XPS studies that Ge-Te, Sb-Te bonds are present in both amorphous and crystalline phases whereas Sb-Ge, Te-Te, Sb-Sb bonds are absent. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this Letter, we present the interesting results of photodarkening (PD), transition toward photostability, and a slow crossover from PD to photobleaching when composition of the chalcogenide glassy thin film changes from Ge-deficient to rich. A subsequent Raman analysis on these as-prepared and irradiated samples provide the direct evidence of photoinduced structural rearrangement, i.e., photocrystallization of Se and the removal of edge-sharing GeSe4 tetrahedra. Further, our experimental results clearly demonstrate that light-induced effects can be effectively controlled by choosing the right composition and provide valuable information on synthesizing photostable/sensitive glasses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amorphous thin chalcogenide Si15Te85-xGex films (x: 5, 9, 10, 11, 12) are prepared by flash evaporation and the temperature dependence of resistance of these films has been studied in the temperature range 25-250 degrees C. All the compositions show a linear variation of resistance in this temperature range. Apart from the linear variation, a sharp reduction in resistance at one or at two distinct temperatures (T-TR1/T-TR2) is seen. Thin films annealed at these temperatures, when subjected to X-ray diffraction studies suggest that the dominant crystalline phase at T-TR1 and at T-TR2 is the same and the two dips are associated with varying levels of crystallization. This is also reflected in the atomic force microscopic (AFM) study. Further, the resistance of these two phases shows no drift when the films are annealed for varying lengths of time (10 min to 120 min) suggesting the stability of the phases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amorphous Ge15Te85-xSix thin film switching devices (1 <= x <= 6) have been deposited in sandwich geometry, on glass substrates with aluminum electrodes, by flash evaporation technique. These devices exhibit memory type electrical switching, like bulk Ge15Te85-xSix glasses. However, unlike the bulk glasses, a-Ge15Te85-xSix films exhibit a smooth electrical switching behavior. The electrical switching fields of a-Ge15Te85-xSix thin film samples are also comparable with other chalcogenide samples used in memory applications. The switching fields of a-Ge15Te85-xSix films have been found to increase with increasing Si concentration. Also, the optical band gap of a-Ge15Te85-xSix films is found to increase with Si content. The observed results have been understood on the basis of increase in network connectivity and rigidity with Si addition. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enzymatic regulation is a fast and reliable diagnosis tool via identification and design of inhibitors for modulation of enzyme function. Previous reports on quantum dots (QDs)-enzyme interactions reveal a protein-surface recognition ability leading to promising applications in protein stabilization, protein delivery, bio-sensing and detection. However, the direct use of QDs to control enzyme inhibition has never been revealed to date. Here we show that a series of biocompatible surface-functionalized metal-chalcogenide QDs can be used as potent inhibitors for malignant cells through the modulation of enzyme activity, while normal cells remain unaffected. The in vitro activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), an enzyme involved critically in the glycolysis of cancer cells, is inactivated selectively in a controlled way by the QDs at a significantly low concentration (nM). Cumulative kinetic studies delineate that the QDs undergo both reversible and irreversible inhibition mechanisms owing to the site-specific interactions, enabling control over the inhibition kinetics. These complementary loss-of-function probes may offer a novel route for rapid clinical diagnosis of malignant cells and biomedical applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The parent compound of iron chalcogenide superconductors, Fe1+yTe, with a range of excess Fe concentrations exhibits intriguing structural and magnetic properties. Here, the interplay of magnetic and structural properties of Fe1.12Te single crystals have been probed by low-temperature synchrotron X-ray powder diffraction, magnetization, and specific heat measurements. Thermodynamic measurements reveal two distinct phase transitions, considered unique to samples possessing excess Fe content in the range of 0.11 <= y <= 0.13. On cooling, an antiferromagnetic transition, T-N approximate to 57K is observed. A closer examination of powder diffraction data suggests that the transition at TN is not purely magnetic, but accompanied by the commencement of a structural phase transition from tetragonal to orthorhombic symmetry. This is followed by a second prominent first-order structural transition at T-S with T-S < T-N, where an onset of monoclinic distortion is observed. The results point to a strong magneto-structural coupling in this material. (C) 2014 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amorphous solids prepared from their melt state exhibit glass transition phenomenon upon heating. Viscosity, specific heat, and thermal expansion coefficient of the amorphous solids show rapid changes at the glass transition temperature (T-g). Generally, application of high pressure increases the T-g and this increase (a positive dT(g)/dP) has been understood adequately with free volume and entropy models which are purely thermodynamic in origin. In this study, the electrical resistivity of semiconducting As2Te3 glass at high pressures as a function of temperature has been measured in a Bridgman anvil apparatus. Electrical resistivity showed a pronounced change at T-g. The T-g estimated from the slope change in the resistivity-temperature plot shows a decreasing trend (negative dT(g)/dP). The dT(g)/dP was found to be -2.36 degrees C/kbar for a linear fit and -2.99 degrees C/kbar for a polynomial fit in the pressure range 1 bar to 9 kbar. Chalcogenide glasses like Se, As2Se3, and As30Se30Te40 show a positive dT(g)/dP which is very well understood in terms of the thermodynamic models. The negative dT(g)/dP (which is generally uncommon in liquids) observed for As2Te3 glass is against the predictions of the thermodynamic models. The Adam-Gibbs model of viscosity suggests a direct relationship between the isothermal pressure derivative of viscosity and the relaxational expansion coefficient. When the sign of the thermal expansion coefficient is negative, dT(g)/dP = Delta k/Delta alpha will be less than zero, which can result in a negative dT(g)/dP. In general, chalcogenides rich in tellurium show a negative thermal expansion coefficient (NTE) in the supercooled and stable liquid states. Hence, the negative dT(g)/dP observed in this study can be understood on the basis of the Adams-Gibbs model. An electronic model proposed by deNeufville and Rockstad finds a linear relation between T-g and the optical band gap (E-g for covalent semiconducting glasses when they are grouped according to their average coordination number. The electrical band gap (Delta E) of As2Te3 glass decreases with pressure. The optical and electrical band gaps are related as Delta E-g = 2 Delta E; thus, a negative dT(g)/dP is expected when As2Te3 glass is subjected to high pressures. In this sense, As2Te3 is a unique glass where its variation of T-g with pressure can be understood by both electronic and thermodynamic models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple, mild, and cost effective methodology has been developed for the synthesis of aryl thio-and selenoglycosides from glycosyl halides and diaryl dichalcogenides. Diaryl dichalcogenides undergo reductive cleavage in the presence of rongalite (HOCH2SO2Na) to generate a chalcogenide anion in situ followed by reaction with glycosyl halides to furnish the corresponding aryl thio- and selenoglycosides in excellent yields. Using this protocol, synthesis of 4-methyl-7-thioumbelliferyl-beta-D-cellobioside (MUS-CB), a fluorescent non-hydrolyzable substrate analogue for cellulases has been achieved. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Investigations on the electrical switching, structural, optical and photoacoustic analysis have been undertaken on chalcogenide GeSe1.5S0.5 thin films of various thicknesses prepared by vacuum evaporation technique. The decrease of band gap energy with increase in film thickness has been explained using the `density of states model'. The structural units of the films are characterized using Raman spectroscopy and the deconvoluted Raman peaks obtained from Gaussian fit around 188 cm(-1), 204 cm(-1) and 214 cm(-1) favors Ge-chalcogen tetrahedral units forming corner and edge sharing tetrahedra. All the thin films samples have been exhibited memory-type electrical switching behavior. An enhancement in the threshold voltages of GeSe1.5S0.5 thin films have been observed with increase in film thickness. The thickness dependence of switching voltages provide an insight into the switching mechanism and it is explained by the Joule heating effect. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, research in copper based quaternary chalcogenide materials has focused on the study of thermoelectric properties due to the complexity in the crystal structure. In the present work, stoichiometric quaternary chalcogenide compounds Cu2+xCd1-x,GeSe4 (x = 0, 0.025, 0.05, 0.075, 0.1, 0.125) were prepared by solid state synthesis. The powder X-ray diffraction patterns of all the samples showed a tetragonal crystal structure with the space group I-42m of the main phase, whereas the samples with x = 0 and x = 0.025 revealed the presence of an orthorhombic phase in addition to the main phase as confirmed by Rietveld analysis. The elemental composition of all the samples characterized by Electron Probe Micro Analyzer showed a slight deviation from the nominal composition. The transport properties were measured in the temperature range of 300 K-723 K. The electrical conductivity of all the samples increased with increasing Cu content due to the enhancement of the hole concentration caused by the substitution of Cd (divalent) by Cu (monovalent). The positive Seebeck coefficient of all the samples in the entire temperature ranges indicates that holes are the majority carriers. The Seebeck coefficient of all the samples decreased with increasing Cu content and showed a reverse trend to the electrical conductivity. The total thermal conductivity of all the samples decreased with increasing temperature which was dominated by the lattice contribution. The maximum figure of merit ZT = 0.42 at 723 K was obtained for the compound Cu2.1Cd0.9GeSe4. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atomically thin two dimensional (2D) layered materials have emerged as a new class of material for nanoelectromechanical systems (NEMS) due to their extraordinary mechanical properties and ultralow mass density. Among them, graphene has been the material of choice for nanomechanical resonator. However, recent interest in 2D chalcogenide compounds has also spurred research in using materials such as MoS2 for the NEMS applications. As the dimensions of devices fabricated using these materials shrink down to atomically thin membrane, strain and nonlinear effects have become important. A clear understanding of the nonlinear effects and the ability to manipulate them is essential for next generation sensors. Here, we report on all electrical actuation and detection of few-layer MoS2 resonator. The ability to electrically detect multiple modes and actuate the modes deep into the nonlinear regime enables us to probe the nonlinear coupling between various vibrational modes. The modal coupling in our device is strong enough to detect three distinct internal resonances. (C) 2015 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thin films of different thicknesses in the range of 200-720 nm have been deposited on glass substrates at room temperature using thermal evaporation technique. The structural investigations revealed that the as-deposited films are amorphous in nature. The surface roughness of the films shows an increasing trend at higher thickness of the films. The surface roughness of the films shows an increasing trend at higher thickness of the films. Interference fringes in the transmission spectra of these films suggest that the films are fairly smooth and uniform. The optical absorption in Sb2Se3 film is described using indirect transition and the variation in band gaps is explained on the basis of defects and disorders in the chalcogenide systems. Raman spectrum confirms the increase of orderliness with film thickness. From the I-V characteristics, a memory type switching is observed whose threshold voltage increases with film thickness. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of substitution of Bi atom instead of S atoms on the structural and optical properties of thin films of As40S60 are reported. The density is found to be increased with the addition Bi heavy metal into As2S3. The amorphous to polycrystalline structure of the bulk sample is observed for Bi more than 7%. The glass transition temperature is found to be decreased with addition of Bi. The absorption edge shifts to shorter wavelength, thereby decreasing optical band gap of BixAs(40)S(60-x) (x= 0,2 and 4% here) film. The optical parameter change is discussed from the stand point of chemical bonds formed in the films and related to the defect states produced due to incorporation of Bi atoms in place of chalcogenide S atoms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The variation in the electrical resistivity of the chalcogenide glasses Ge15Te85-x has been studied as a function of high pressure for pressures up to 8.5GPa. All the samples studied undergo a semi-conductor to metallic transition in a continuous manner at pressures between 1.5-2.5GPa. The transition pressure at which the samples turn metallic increases with increase in percentage of Indium. This increase is a direct consequence of the increase in network rigidity with the addition of Indium. At a constant pressure of 0.5GPa, the normalized resistivity shows some signature of the existence of the intermediate phase. Samples recovered after a pressure cycle remain amorphous suggesting that the semi-conductor to metallic transition arises from a reduction of the band gap due to pressure or the movement of the Fermi level into the conduction or valence band.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, research in copper-based quaternary chalcogenide materials has been found to be interesting for the study of thermoelectric properties because of their low thermal conductivity due to complex crystal structures. In the present work, stoichiometric quaternary chalcogenide compounds Cu2CdSn1-xInxSe4(x = 0, 0.025, 0.05, 0.1) were prepared by solid state synthesis. The powder X-ray diffraction patterns of all the samples showed a tetragonal crystal structure with the space group I (4) over bar 2m of the main phase. In addition to this phase, a small amount of impurity phase CdSe was present in all the samples, as confirmed by Rietveld analysis. The elemental composition of all the samples characterized by an Electron Probe Micro Analyzer showed a slight deviation from the nominal composition. The transport properties were measured in the temperature range of 350 K-723 K. The positive Seebeck coefficient of all the compounds indicate that the majority carriers are holes. The Seebeck coefficient and electrical resistivity did not follow the trend in the expected manner with In doping, which could be influenced by the presence of the impurity phases. The total thermal conductivity of all the samples was dominated by the lattice thermal conductivity, while the electronic contribution was very small due to the low carrier contribution. A lattice thermal conductivity decrease with an increase of temperature indicates the dominance of phonon-phonon scattering at higher temperatures. The maximum figure of merit zT = 0.30 at 723 K was obtained for the compound Cu2CdSn0.9In0.1Se4. (C) 2016 Elsevier Ltd. All rights reserved.