992 resultados para cerebral artery


Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE: To assess whether thalamic strokes presenting with a central Horner's syndrome (HS) show specific clinicoanatomic patterns. METHODS: From the Lausanne Stroke Registry (period 1993 to spring 2002), the authors selected all patients with thalamic stroke presenting with ipsilateral HS. Patients with complete infarction of the posterior cerebral artery territory, with involvement of middle cerebral artery territory or bilateral lesions, were excluded. Lesions on brain MRI were correlated with standard neuroanatomic templates. RESULTS: Nine patients with thalamic infarction presenting with central HS were found; all showed contralateral ataxic hemiparesis (AH). Lesions involved the anterior or paramedian thalamus and extended to the hypothalamic or rostral paramedian mesencephalic area in all but one subject. Associated clinical signs included dysphasia (two patients), somnolence (six), vertical gaze paresis (two), asterixis (two), and hemihypesthesia (three). CONCLUSION: The alternate clinical pattern of central HS with contralateral AH is a stroke syndrome of the diencephalic-mesencephalic junction, resulting from the involvement of the common arterial supply to the paramedian/anterior thalamus, the posterior hypothalamus and the rostral paramedian midbrain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Acute stroke presenting as monoparesis is rare, with a pure motor deficit in the arm or leg extending to an isolated facial paresis. OBJECTIVE: To raise the question if acute stroke presenting as monoparesis is a different entity from stroke with a more extensive motor deficit. PATIENTS: In the Lausanne Stroke Registry (1979-2000), 195 (4.1%) of 4802 patients met the clinical criteria for pure monoparesis involving the face (22%), arm (63%), or leg (15%). RESULTS: In the vast majority of cases (> 95%), monoparesis corresponded to ischemic stroke with a favorable outcome, with initial computed tomography scans or magnetic resonance images showing no signs of hemorrhage. The lesion for a facial deficit was most frequently located subcortically (internal capsule); for an arm deficit, in the superficial middle cerebral artery; and for a leg deficit, in the anterior cerebral artery territory. In pure monoparesis, only 17% of the patients had more than 1 risk factor as compared with 26% of those with bimodal and trimodal hemiparesis and with 46% of all patients with stroke other than those with pure motor stroke. The only frequent risk factor was hypertension (53%); however, this frequency was no different from that in other patients with stroke. No major stroke etiology could be identified in any of the 3 subgroups of monoparesis. CONCLUSION: Our finding of a wide range of stroke localization and etiology in monoparesis without any particular subgroup suggests that no specific plan of investigation can be recommended for these patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Inflammatory mechanisms are known to contribute to the pathophysiology of traumatic brain injury (TBI). Since bradykinin is one of the first mediators activated during inflammation, we investigated the role of bradykinin and its receptors in posttraumatic secondary brain damage. We subjected wild-type (WT), B(1)-, and B(2)-receptor-knockout mice to controlled cortical impact (CCI) and analyzed tissue bradykinin as well as kinin receptor mRNA and protein expression up to 48 h thereafter. Brain edema, contusion volume, and functional outcome were assessed 24 h and 7 days after CCI. Tissue bradykinin was maximally increased 2 h after trauma (P<0.01 versus sham). Kinin B(1) receptor mRNA was upregulated up to four-fold 24 h after CCI. Immunohistochemistry showed that B(1) and B(2) receptors were expressed in the brain and were significantly upregulated in the traumatic penumbra 1 to 24 h after CCI. B(2)R(-/-) mice had significantly less brain edema (-51% versus WT, 24 h; P<0.001), smaller contusion volumes ( approximately 50% versus WT 24 h and 7 d after CCI; P<0.05), and better functional outcome 7 days after TBI as compared with WT mice (P<0.05). The present results show that bradykinin and its B(2) receptors play a causal role for brain edema formation and cell death after TBI.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Early studies showed that the administration of the anti-inflammatory cytokine interleukin-10 (IL10) protects against permanent middle cerebral artery occlusion (MCAO) in mice. In this study, transgenic mice expressing murine IL10 (IL10T) directed by the major histocompatibility complex Ea promoter were produced and used to explore the effect of chronically increased IL10 levels on MCAO-related molecular mechanisms. IL10 was over-expressed in astrocytes, microglia, and endothelial brain cells in IL10T compared with wild type mice. Four days following MCAO, IL10T mice showed a 40% reduction in infarct size which was associated to significantly reduced levels of active caspase 3 compared with wild type mice. Under basal conditions, anti-inflammatory factors such as nerve growth factor and GSH were up-regulated and the pro-inflammatory cytokine IL1beta was down-regulated in the brain of IL10T animals. In addition, these mice displayed increased basal GSH levels in microglial and endothelial cells as well as a marked increase in manganese superoxide dismutase in endothelial lining blood vessels. Following ischemia, IL10T mice showed a marked reduction in pro-inflammatory cytokines, including tumor necrosis factor-alpha, interferon-gamma, and IL1beta. Our data indicate that constitutive IL10 over-expression is associated with a striking resistance to cerebral ischemia that may be attributed to changes in the basal redox properties of glial/endothelial cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sleep-wake disturbances are frequently observed in stroke patients and are associated with poorer functional outcome. Until now the effects of sleep on stroke evolution are unknown. The purpose of the present study was to evaluate the effects of three sleep deprivation (SD) protocols on brain damages after focal cerebral ischemia in a rat model. Permanent occlusion of distal branches of the middle cerebral artery was induced in adult rats. The animals were then subjected to 6h SD, 12h SD or sleep disturbances (SDis) in which 3 x 12h sleep deprivation were performed by gentle handling. Infarct size and brain swelling were assessed by Cresyl violet staining, and the number of damaged cells was measured by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) staining. Behavioral tests, namely tape removal and cylinder tests, were performed for assessing sensorimotor function. In the 6h SD protocol, no significant difference (P > 0.05) was found either in infarct size (42.5 ± 30.4 mm3 in sleep deprived animals vs. 44.5 ± 20.5 mm3 in controls, mean ± s.d.), in brain swelling (10.2 ± 3.8 % in sleep deprived animals vs. 11.3 ± 2.0 % in controls) or in number of TUNEL-positive cells (21.7 ± 2.0/mm2 in sleep deprived animals vs. 23.0 ± 1.1/mm2 in controls). In contrast, 12h sleep deprivation increased infarct size by 40 % (82.8 ± 10.9 mm3 in SD group vs. 59.2 ± 13.9 mm3 in control group, P = 0.008) and number of TUNEL-positive cells by 137 % (46.8 ± 15/mm in SD group vs. 19.7 ± 7.7/mm2 in control group, P = 0.003). There was no significant difference (P > 0.05) in brain swelling (12.9 ± 6.3 % in sleep deprived animals vs. 11.6 ± 6.0 % in controls). The SDis protocol also increased infarct size by 76 % (3 x 12h SD 58.8 ± 20.4 mm3 vs. no SD 33.8 ± 6.3 mm3, P = 0.017) and number of TUNEL-positive cells by 219 % (32.9 ± 13.2/mm2 vs. 10.3 ± 2.5/mm2, P = 0.008). Brain swelling did not show any difference between the two groups (24.5 ± 8.4 % in SD group vs. 16.7 ± 8.9 % in control group, p > 0.05). Both behavioral tests did not show any concluding results. In summary, we demonstrate that sleep deprivation aggravates brain damages in a rat model of stroke. Further experiments are needed to unveil the mechanisms underlying these effects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have studied ischemic tolerance induced by the serine protease thrombin in two different models of experimental ischemia. In organotypic hippocampal slice cultures, we demonstrate that incubation with low doses of thrombin protects neurons against a subsequent severe oxygen and glucose deprivation. L-JNKI1, a highly specific c-jun N-terminal kinase (JNK) inhibitor, and a second specific JNK inhibitor, SP600125, prevented thrombin preconditioning (TPC). We also show that the exposure to thrombin increases the level of phosphorylated c-jun, the major substrate of JNK. TPC, in vivo, leads to significantly smaller lesion sizes after a 30-min middle cerebral artery occlusion (MCAo), and the preconditioned mice were better off in the three tests used to evaluate functional recovery. In accordance with in vitro results, TPC in vivo was prevented by administration of L-JNKI1, supporting a role for JNK in TPC. These results, from two different TPC models and with two distinct JNK inhibitors, show that JNK is likely to be involved in TPC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: To determine whether infarct core or penumbra is the more significant predictor of outcome in acute ischemic stroke, and whether the results are affected by the statistical method used. METHODS: Clinical and imaging data were collected in 165 patients with acute ischemic stroke. We reviewed the noncontrast head computed tomography (CT) to determine the Alberta Score Program Early CT score and assess for hyperdense middle cerebral artery. We reviewed CT-angiogram for site of occlusion and collateral flow score. From perfusion-CT, we calculated the volumes of infarct core and ischemic penumbra. Recanalization status was assessed on early follow-up imaging. Clinical data included age, several time points, National Institutes of Health Stroke Scale at admission, treatment type, and modified Rankin score at 90 days. Two multivariate regression analyses were conducted to determine which variables predicted outcome best. In the first analysis, we did not include recanalization status among the potential predicting variables. In the second, we included recanalization status and its interaction between perfusion-CT variables. RESULTS: Among the 165 study patients, 76 had a good outcome (modified Rankin score ≤2) and 89 had a poor outcome (modified Rankin score >2). In our first analysis, the most important predictors were age (P<0.001) and National Institutes of Health Stroke Scale at admission (P=0.001). The imaging variables were not important predictors of outcome (P>0.05). In the second analysis, when the recanalization status and its interaction with perfusion-CT variables were included, recanalization status and perfusion-CT penumbra volume became the significant predictors (P<0.001). CONCLUSIONS: Imaging prediction of tissue fate, more specifically imaging of the ischemic penumbra, matters only if recanalization can also be predicted.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Early epilepsy is known to worsen the developmental prognosis of young children with a congenital focal brain lesion, but its direct role is often very difficult to delineate from the other variables. This requires prolonged periods of follow-up with simultaneous serial electrophysiological and developmental assessments which are rarely obtained. We studied a male infant with a right prenatal infarct in the territory of the right middle cerebral artery resulting in a left spastic hemiparesis, and an epileptic disorder (infantile spasms with transient right hemihypsarrhythmia and focal seizures) from the age of 7 months until the age of 4 years. Pregnancy and delivery were normal. A dissociated delay of early language acquisition affecting mainly comprehension without any autistic features was documented. This delay was much more severe than usually expected in children with early focal lesions, and its evolution, with catch-up to normal, was correlated with the active phase of the epilepsy. We postulate that the epilepsy specifically amplified a pattern of delayed language emergence, mainly affecting lexical comprehension, reported in children with early right hemisphere damage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Leptomeningeal collaterals improve outcome after stroke, including reduction of hemorrhagic complications after thrombolytic or endovascular therapy, smaller infarct size, and reduction in symptoms at follow-up evaluation. The purpose of this study was to determine the demographic and clinical variables that are associated with a greater degree of cerebral collaterals. METHODS: Clinical data of patients presenting with M1 occlusions of the middle cerebral artery (MCA) and associated computed tomography angiography studies after admission from 3 separate institutions were retrospectively compiled (n = 82). Occluded hemispheres were evaluated against the intact hemisphere for degree of collateralization in the MCA territory. Regression analysis of variance was conducted between clinical variables and collateral score to determine which variables associate with greater collateral development. RESULTS: Smaller infarct size corresponded to greater collateral scores, whereas older age and statin use corresponded to lower collateral scores (P < .001). CONCLUSIONS: Cerebral collateralization is influenced by age and statin use and influences infarct size.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Several prognostic scores have been developed to predict the risk of symptomatic intracranial hemorrhage (sICH) after ischemic stroke thrombolysis. We compared the performance of these scores in a multicenter cohort. METHODS: We merged prospectively collected data of patients with consecutive ischemic stroke who received intravenous thrombolysis in 7 stroke centers. We identified and evaluated 6 scores that can provide an estimate of the risk of sICH in hyperacute settings: MSS (Multicenter Stroke Survey); HAT (Hemorrhage After Thrombolysis); SEDAN (blood sugar, early infarct signs, [hyper]dense cerebral artery sign, age, NIH Stroke Scale); GRASPS (glucose at presentation, race [Asian], age, sex [male], systolic blood pressure at presentation, and severity of stroke at presentation [NIH Stroke Scale]); SITS (Safe Implementation of Thrombolysis in Stroke); and SPAN (stroke prognostication using age and NIH Stroke Scale)-100 positive index. We included only patients with available variables for all scores. We calculated the area under the receiver operating characteristic curve (AUC-ROC) and also performed logistic regression and the Hosmer-Lemeshow test. RESULTS: The final cohort comprised 3012 eligible patients, of whom 221 (7.3%) had sICH per National Institute of Neurological Disorders and Stroke, 141 (4.7%) per European Cooperative Acute Stroke Study II, and 86 (2.9%) per Safe Implementation of Thrombolysis in Stroke criteria. The performance of the scores assessed with AUC-ROC for predicting European Cooperative Acute Stroke Study II sICH was: MSS, 0.63 (95% confidence interval, 0.58-0.68); HAT, 0.65 (0.60-0.70); SEDAN, 0.70 (0.66-0.73); GRASPS, 0.67 (0.62-0.72); SITS, 0.64 (0.59-0.69); and SPAN-100 positive index, 0.56 (0.50-0.61). SEDAN had significantly higher AUC-ROC values compared with all other scores, except for GRASPS where the difference was nonsignificant. SPAN-100 performed significantly worse compared with other scores. The discriminative ranking of the scores was the same for the National Institute of Neurological Disorders and Stroke, and Safe Implementation of Thrombolysis in Stroke definitions, with SEDAN performing best, GRASPS second, and SPAN-100 worst. CONCLUSIONS: SPAN-100 had the worst predictive power, and SEDAN constantly the highest predictive power. However, none of the scores had better than moderate performance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Angiographic studies suggest that acute vasospasm within 48 h of aneurysmal subarachnoid hemorrhage (SAH) predicts symptomatic vasospasm. However, the value of transcranial Doppler within 48 h of SAH is unknown. METHODS: We analyzed 199 patients who had at least 1 middle cerebral artery (MCA) transcranial Doppler examination within 48 h of SAH onset. Abnormal MCA mean blood flow velocity (mBFV) was defined as >90 cm/s. Delayed cerebral ischemia (DCI) was defined as clinical deterioration or radiological evidence of infarction due to vasospasm. RESULTS: Seventy-six patients (38%) had an elevation of MCA mBFV >90 cm/s within 48 h of SAH onset. The predictors of elevated mBFV included younger age (OR = 0.97 per year of age, p = 0.002), admission angiographic vasospasm (OR = 5.4, p = 0.009) and elevated white blood cell count (OR = 1.1 per 1,000 white blood cells, p = 0.003). Patients with elevated mBFV were more likely to experience a 10 cm/s fall in velocity at the first follow-up than those with normal baseline velocities (24 vs. 10%, p < 0.01), suggestive of resolving spasm. DCI developed in 19% of the patients. An elevated admission mBFV >90 cm/s during the first 48 h (adjusted OR = 2.7, p = 0.007) and a poor clinical grade (Hunt-Hess score 4 or 5, OR = 3.2, p = 0.002) were associated with a significant increase in the risk of DCI. CONCLUSION: Early elevations of mBFV correlate with acute angiographic vasospasm and are associated with a significantly increased risk of DCI. Transcranial Doppler ultrasound may be an early useful tool to identify patients at higher risk to develop DCI after SAH.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study is the first to examine the effect of high-altitude acclimatization and reexposure on the responses of cerebral blood flow and ventilation to CO2. We also compared the steady-state estimates of these parameters during acclimatization with the modified rebreathing method. We assessed changes in steady-state responses of middle cerebral artery velocity (MCAv), cerebrovascular conductance index (CVCi), and ventilation (V(E)) to varied levels of CO2 in 21 lowlanders (9 women; 21 ± 1 years of age) at sea level (SL), during initial exposure to 5,260 m (ALT1), after 16 days of acclimatization (ALT16), and upon reexposure to altitude following either 7 (POST7) or 21 days (POST21) at low altitude (1,525 m). In the nonacclimatized state (ALT1), MCAv and V(E) responses to CO2 were elevated compared with those at SL (by 79 ± 75% and 14.8 ± 12.3 l/min, respectively; P = 0.004 and P = 0.011). Acclimatization at ALT16 further elevated both MCAv and Ve responses to CO2 compared with ALT1 (by 89 ± 70% and 48.3 ± 32.0 l/min, respectively; P < 0.001). The acclimatization gained for V(E) responses to CO2 at ALT16 was retained by 38% upon reexposure to altitude at POST7 (P = 0.004 vs. ALT1), whereas no retention was observed for the MCAv responses (P > 0.05). We found good agreement between steady-state and modified rebreathing estimates of MCAv and V(E) responses to CO2 across all three time points (P < 0.001, pooled data). Regardless of the method of assessment, altitude acclimatization elevates both the cerebrovascular and ventilatory responsiveness to CO2. Our data further demonstrate that this enhanced ventilatory CO2 response is partly retained after 7 days at low altitude.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: XG-102 (formerly D-JNKI1), a TAT-coupled dextrogyre peptide which selectively inhibits the c-Jun N-terminal kinase, is a powerful neuroprotectant in mouse models of middle cerebral artery occlusion (MCAo) with delayed intracerebroventricular injection. We aimed to determine whether this neuroprotection could also be achieved by intravenous injection of XG-102, which is a more feasible approach for future use in stroke patients. We also tested the compatibility of the compound with recombinant tissue plasminogen activator (rtPA), commonly used for intravenous thrombolysis and known to enhance excitotoxicity. METHODS: Male ICR-CD1 mice were subjected to a 30-min-suture MCAo. XG-102 was injected intravenously in a single dose, 6 h after ischemia. Hippocampal slice cultures were subjected to oxygen (5%) and glucose (1 mM) deprivation for 30 min. rtPA was added after ischemia and before XG-102 administration, both in vitro and in vivo. RESULTS: The lowest intravenous dose achieving neuroprotection was 0.0003 mg/kg, which reduced the infarct volume after 48 h from 62 +/- 19 mm(3) (n = 18) for the vehicle-treated group to 18 +/- 9 mm(3) (n = 5, p &lt; 0.01). The behavioral outcome was also significantly improved at two doses. Addition of rtPA after ischemia enhanced the ischemic damage both in vitro and in vivo, but XG-102 was still able to induce a significant neuroprotection. CONCLUSIONS: A single intravenous administration of XG-102 several hours after ischemia induces a powerful neuroprotection. XG-102 protects from ischemic damage in the presence of rtPA. The feasibility of systemic administration of this promising compound and its compatibility with rtPA are important steps for its development as a drug candidate in ischemic stroke.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVE: Investigations were performed to establish if repetitive arm cycling training enhances the antispastic effect of intramuscular botulinum toxin (BTX) injections in postischemic spastic hemiparesis. Effects on cerebral activation were evaluated by functional magnetic resonance imaging (fMRI). METHODS: Eight chronic spastic hemisyndrome patients (49 ± 10 years) after middle cerebral artery infarction (5.5 ± 2.7 years) were investigated. BTX was injected into the affected arm twice, 6 months apart. Spasticity was assessed using the Ashworth Scale and range of motion before and 3 months after BTX injections. Images were analyzed using Brain Voyager QX 1.8, and fMRI signal changes were corrected for multiple comparisons. RESULTS: During passive movements of affected and nonaffected hands, fMRI activity was increased bilaterally in the sensorimotor cortex (MISI), secondary somatosensory areas (SII), and supplementary motor area predominantly in the contralesional hemisphere, compared with the rest. Following repetitive arm cycling, fMRI activity increased further in MISI of the lesioned hemisphere and SII of the contralesional hemisphere. For patients with residual motor activity, treatment-related fMRI activity increases were associated with reduced spasticity; in completely plegic patients, there was no fMRI activity change in SII but increased spasticity after training. CONCLUSION: Increased activity in SII of the contralesional hemisphere and in MISI of the lesioned hemisphere reflect a treatment-induced effect in the paretic arm. It is hypothesized that the increased BOLD activity results from increased afferent information related to the antispastic BTX effect reinforced by training.