924 resultados para cavity QED
Resumo:
The field of cavity optomechanics, which concerns the coupling of a mechanical object's motion to the electromagnetic field of a high finesse cavity, allows for exquisitely sensitive measurements of mechanical motion, from large-scale gravitational wave detection to microscale accelerometers. Moreover, it provides a potential means to control and engineer the state of a macroscopic mechanical object at the quantum level, provided one can realize sufficiently strong interaction strengths relative to the ambient thermal noise. Recent experiments utilizing the optomechanical interaction to cool mechanical resonators to their motional quantum ground state allow for a variety of quantum engineering applications, including preparation of non-classical mechanical states and coherent optical to microwave conversion. Optomechanical crystals (OMCs), in which bandgaps for both optical and mechanical waves can be introduced through patterning of a material, provide one particularly attractive means for realizing strong interactions between high-frequency mechanical resonators and near-infrared light. Beyond the usual paradigm of cavity optomechanics involving isolated single mechanical elements, OMCs can also be fashioned into planar circuits for photons and phonons, and arrays of optomechanical elements can be interconnected via optical and acoustic waveguides. Such coupled OMC arrays have been proposed as a way to realize quantum optomechanical memories, nanomechanical circuits for continuous variable quantum information processing and phononic quantum networks, and as a platform for engineering and studying quantum many-body physics of optomechanical meta-materials.
However, while ground state occupancies (that is, average phonon occupancies less than one) have been achieved in OMC cavities utilizing laser cooling techniques, parasitic absorption and the concomitant degradation of the mechanical quality factor fundamentally limit this approach. On the other hand, the high mechanical frequency of these systems allows for the possibility of using a dilution refrigerator to simultaneously achieve low thermal occupancy and long mechanical coherence time by passively cooling the device to the millikelvin regime. This thesis describes efforts to realize the measurement of OMC cavities inside a dilution refrigerator, including the development of fridge-compatible optical coupling schemes and the characterization of the heating dynamics of the mechanical resonator at sub-kelvin temperatures.
We will begin by summarizing the theoretical framework used to describe cavity optomechanical systems, as well as a handful of the quantum applications envisioned for such devices. Then, we will present background on the design of the nanobeam OMC cavities used for this work, along with details of the design and characterization of tapered fiber couplers for optical coupling inside the fridge. Finally, we will present measurements of the devices at fridge base temperatures of Tf = 10 mK, using both heterodyne spectroscopy and time-resolved sideband photon counting, as well as detailed analysis of the prospects for future quantum applications based on the observed optically-induced heating.
Resumo:
Part I: The dynamic response of an elastic half space to an explosion in a buried spherical cavity is investigated by two methods. The first is implicit, and the final expressions for the displacements at the free surface are given as a series of spherical wave functions whose coefficients are solutions of an infinite set of linear equations. The second method is based on Schwarz's technique to solve boundary value problems, and leads to an iterative solution, starting with the known expression for the point source in a half space as first term. The iterative series is transformed into a system of two integral equations, and into an equivalent set of linear equations. In this way, a dual interpretation of the physical phenomena is achieved. The systems are treated numerically and the Rayleigh wave part of the displacements is given in the frequency domain. Several comparisons with simpler cases are analyzed to show the effect of the cavity radius-depth ratio on the spectra of the displacements.
Part II: A high speed, large capacity, hypocenter location program has been written for an IBM 7094 computer. Important modifications to the standard method of least squares have been incorporated in it. Among them are a new way to obtain the depth of shocks from the normal equations, and the computation of variable travel times for the local shocks in order to account automatically for crustal variations. The multiregional travel times, largely based upon the investigations of the United States Geological Survey, are confronted with actual traverses to test their validity.
It is shown that several crustal phases provide control enough to obtain good solutions in depth for nuclear explosions, though not all the recording stations are in the region where crustal corrections are considered. The use of the European travel times, to locate the French nuclear explosion of May 1962 in the Sahara, proved to be more adequate than previous work.
A simpler program, with manual crustal corrections, is used to process the Kern County series of aftershocks, and a clearer picture of tectonic mechanism of the White Wolf fault is obtained.
Shocks in the California region are processed automatically and statistical frequency-depth and energy depth curves are discussed in relation to the tectonics of the area.
Resumo:
This thesis describes applications of cavity enhanced spectroscopy towards applications of remote sensing, chemical kinetics and detection of transient radical molecular species. Both direct absorption spectroscopy and cavity ring-down spectroscopy are used in this work. Frequency-stabilized cavity ring-down spectroscopy (FS-CRDS) was utilized for measurements of spectral lineshapes of O2 and CO2 for obtaining laboratory reference data in support of NASA’s OCO-2 mission. FS-CRDS is highly sensitive (> 10 km absorption path length) and precise (> 10000:1 SNR), making it ideal to study subtle non-Voigt lineshape effects. In addition, these advantages of FS-CRDS were further extended for measuring kinetic isotope effects: A dual-wavelength variation of FS-CRDS was used for measuring precise D/H and 13C/12C methane isotope ratios (sigma>0.026%) for the purpose of measuring the temperature dependent kinetic isotope effects of methane oxidation with O(1D) and OH radicals. Finally, direct absorption spectroscopic detection of the trans-DOCO radical via a frequency combs spectrometer was conducted in collaboration with professor Jun Ye at JILA/University of Colorado.
Resumo:
A highly uniform multiwavelength erbium-doped fiber ring laser with an intracavity sine phase modulator is demonstrated. The flat output spectrum is achieved by optimizing the cavity structure, modulation amplitude, and frequency of the sine phase modulator. Fifteen lasing lines with wavelength spacing of 0.9 nm appear simultaneously and stably with power differences less than 2 dB and side-mode suppression ratio higher than 32 dB. In addition, the proposed cavity can support unidirectional operation without optical isolators. An output power difference of about 20 dB is realized between the counterclockwise and clockwise directions, which is almost independent of the pump power and lasing wavelengths. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
The Lau cavity is the self-imaging cavity with a phase corrector under the Lau reimaging condition. The author proposes the use of the Lau cavity to utilize both the Talbot and the Lau effects for phase locking one-dimensional and two-dimensional diode-laser arrays into a single-lobe coherent beam. Analyses on the self-reproducing of a coherent lasing field and the reimaging of initial incoherent radiation are given.
Resumo:
High-performance InGaAs/InGaAlAs multiple-quantum-well vertical-cavity surface-emitting lasers (VCSELs) with lnGaAlAs/InP distributed Bragg reflectors are proposed for operation at the wavelength of 1.55 mum. The lasers have good heat diffusion characteristic, large index contrast in DBRs, and weak temperature sensitivity. They could be fabricated either by metal-organic chemical vapor deposition (MOCVD) or by molecular beam epitaxy (MBE) growth. The laser light-current characteristics indicate that a suitable reflectivity of the DBR on the light output side in a laser makes its output power increase greatly and its lasing threshold current reduce significantly, and that a small VCSEL could output the power around its maximum for the output mirror at the reflectivity varying in a broader range than a large VCSEL does. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
A highly uniform multiwavelength erbium-doped fiber ring laser with an intracavity sine phase modulator is demonstrated. The flat output spectrum is achieved by optimizing the cavity structure, modulation amplitude, and frequency of the sine phase modulator. Fifteen lasing lines with wavelength spacing of 0.9 nm appear simultaneously and stably with power differences less than 2 dB and side-mode suppression ratio higher than 32 dB. In addition, the proposed cavity can support unidirectional operation without optical isolators. An output power difference of about 20 dB is realized between the counterclockwise and clockwise directions, which is almost independent of the pump power and lasing wavelengths. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
The problem considered is that of minimizing the drag of a symmetric plate in infinite cavity flow under the constraints of fixed arclength and fixed chord. The flow is assumed to be steady, irrotational, and incompressible. The effects of gravity and viscosity are ignored.
Using complex variables, expressions for the drag, arclength, and chord, are derived in terms of two hodograph variables, Γ (the logarithm of the speed) and β (the flow angle), and two real parameters, a magnification factor and a parameter which determines how much of the plate is a free-streamline.
Two methods are employed for optimization:
(1) The parameter method. Γ and β are expanded in finite orthogonal series of N terms. Optimization is performed with respect to the N coefficients in these series and the magnification and free-streamline parameters. This method is carried out for the case N = 1 and minimum drag profiles and drag coefficients are found for all values of the ratio of arclength to chord.
(2) The variational method. A variational calculus method for minimizing integral functionals of a function and its finite Hilbert transform is introduced, This method is applied to functionals of quadratic form and a necessary condition for the existence of a minimum solution is derived. The variational method is applied to the minimum drag problem and a nonlinear integral equation is derived but not solved.
Resumo:
Output power fluctuations in a grating external cavity diode laser with Littman configuration are described, showing peculiar chaotic behaviors of self-pulsation at the L-I curve kink points. Different spectral characteristics with multiple peaks are observed at upper and lower state of the self-pulsation. It is found also that P-N junction voltage jumps in a same pace with the pulsation. The observed phenomena reflect competition between different longitudinal modes, and transient variation of transverse modes in addition. These experimental results may contain information about the mechanisms of the chaotic instability in strong filtered feedback semiconductor lasers. (C) 2008 Optical Society of America
Resumo:
Based on graphic analysis design method of optical resonator, a simple design expression of V-folded cavity of end-pumped solid-state lasers with TEM00 operation is described, which satisfies two criterias of the resonator design. We give numerical simulation of spot size as a function of thermal focal length using this design approach whose advantages are validated experimentally.
Resumo:
A novel Littman-Metcalf external cavity laser diode array with two feedback mirrors is introduced. The line-width broadening effect caused by smile can be reduced by the novel external cavity. At the drive current of 16A, the line-width is narrowed to 0.1nm from free-running width of 1.6nm with output efficiency of 84%.
Resumo:
A novel off-axis external cavity is designed for laser diode array to improve the beam quality. In this external cavity, a circle aperture with variable size is used as a spatial filter. The diameter of aperture is optimized to 1.2mm and the off-axis angle of external cavity is optimized at 2.6 deg. In the optimal case, the beam parameter product (BPP) of laser diode array is reduced to 121 mm. mrad from 1050 mm. mrad with external cavity optical efficiency of 81%. (C) 2007 Optical Society of America.