990 resultados para catalytic hydrogenation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catalytic decomposition is a very attractive way to convert tar components into H2, CO and other useful chemicals. The performance of Fe3Ni8/PG (palygorskite, PG) reduced in hydrogen at different temperatures for the catalytic decomposition of benzene has been assessed. Benzene was used as the model biomass tar. The effects of calcination atmosphere, temperatures and benzene concentration on catalytic cracking of benzene were measured. The results of XRD (X-Ray Diffraction), TEM (Transmission Electron Microscope), TPR (Temperature Program Reduction), TPSR (Temperature Program Surface Reduction), TC (Total Carbon), the reactivity component and reaction mechanism over Fe3Ni8/PG for catalytic cracking of benzene are discussed. The results showed particles of awaruite (Fe, Ni) about 2–30 nm were found on the surface of palygorskite by TEM when the calcination temperature was 600 °C. Particles with size smaller than 30 nm were obtained on all prepared Fe3Ni8/PG catalysts as shown by XRD. The nanoparticles proved to be the reactive component for catalytic cracking of benzene and the increase of active particle size caused the decrease in the reactivity of Fe3Ni8/PG. Fe3Ni8/PG annealed in hydrogen at 600 °C was proved to have the best reactivity in experiments (45% hydrogen yield). High concentration benzene (448 g/m3) accelerated the formation of carbon deposition. However, iron oxide decreases carbon deposition and increases the stability of catalyst for catalytic cracking of benzene. The application of Fe3Ni8/PG catalysts was proved a very effective catalyst for the catalytic cracking of benzene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A process for catalytic conversion and/or adsorption of gases inclusive of NOx, SOx, CO2, CO, dioxins and PAHs and combinations thereof wherein said gases may contain particulates which include contacting one or more of such gases with an alumino-silicate material having: a primarily tetrahedrally co-ordinated aluminium as established by the fact that the 27 A1 Magic Angle Spinning (MAS) provides a single peak at 55-58 ppm (FWHM ~23 ppm) relative to Al(H 2 0) 6 3 and (ii) a cation exchange capacity of at least 1 meq 100 in aqueous solution at room temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synergistic effect of metallic couple and carbon nanotubes on Mg results in an ultrafast kinetics of hydrogenation that overcome a critical barrier of practical use of Mg as hydrogen storage materials. The ultrafast kinetics is attributed to the metal−H atomic interaction at the Mg surface and in the bulk (energy for bonding and releasing) and atomic hydrogen diffusion along the grain boundaries (aggregation of carbon nanotubes) and inside the grains. Hence, a hydrogenation mechanism is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methane gas has been identified as the most destructive greenhouse gas (Liu et al., 2004). It was reported that the global warming potential of methane per molecule relative to CO2 is approximately 23 on a 100-year timescale or 62 over a 20-year period (IPCC, 2001). Methane has high C-H bond energy of about 439 kJ/mol and other higher alkanes (or saturated hydrocarbons) also have a very strong C-C and C-H bonds, thus making their molecules to have no empty orbitals of low energy or filled orbitals of high energy that could readily participate in chemical reactions as is the case with unsaturated hydrocarbons such as olefins and alkynes (Crabtree, 1994; Labinger & Bercaw, 2002)...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent experiments [F. E. Pinkerton, M. S. Meyer, G. P. Meisner, M. P. Balogh, and J. J. Vajo, J. Phys. Chem. C 111, 12881 (2007) and J. J. Vajo and G. L. Olson, Scripta Mater. 56, 829 (2007)] demonstrated that the recycling of hydrogen in the coupled LiBH4/MgH2 system is fully reversible. The rehydrogenation of MgB2 is an important step toward the reversibility. By using ab initio density functional theory calculations, we found that the activation barrier for the dissociation of H2 are 0.49 and 0.58 eV for the B and Mg-terminated MgB2(0001) surface, respectively. This implies that the dissociation kinetics of H2 on a MgB2 (0001) surface should be greatly improved compared to that in pure Mg materials. Additionally, the diffusion of dissociated H atom on the Mg-terminated MgB2(0001) surface is almost barrier-less. Our results shed light on the experimentally-observed reversibility and improved kinetics for the coupled LiBH4/MgH2 system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnesium and its alloys have shown a great potential in effective hydrogen storage due to their advantages of high volumetric/gravimetric hydrogen storage capacity and low cost. However, the use of these materials in fuel cells for automotive applications at the present time is limited by high hydrogenation temperature and sluggish sorption kinetics. This paper presents the recent results of design and development of magnesium-based nanocomposites demonstrating the catalytic effects of carbon nanotubes and transition metals on hydrogen adsorption in these materials. The results are promising for the application of magnesium materials for hydrogen storage, with significantly reduced absorption temperatures and enhanced ab/desorption kinetics. High level Density Functional Theory calculations support the analysis of the hydrogenation mechanisms by revealing the detailed atomic and molecular interactions that underpin the catalytic roles of incorporated carbon and titanium, providing clear guidance for further design and development of such materials with better hydrogen storage properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ab initio density functional theory (DFT) calculations are performed to explore possible catalytic effects on the dissociative chemisorption of hydrogen on a Mg(0001) surface when carbon is incorporated into Mg materials. The computational results imply that a C atom located initially on a Mg(0001) surface can migrate into the subsurface and occupy an fcc interstitial site, with charge transfer to the C atom from neighboring Mg atoms. The effect of subsurface C on the dissociation of H2 on the Mg(0001) surface is found to be relatively marginal: a perfect sublayer of interstitial C is calculated to lower the barrier by 0.16 eV compared with that on a pure Mg(0001) surface. Further calculations reveal, however, that sublayer C may have a significant effect in enhancing the diffusion of atomic hydrogen into the sublayers through fcc channels. This contributes new physical understanding toward rationalizing the experimentally observed improvement in absorption kinetics of H2 when graphite or single walled carbon nanotubes (SWCNT) are introduced into the Mg powder during ball milling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed mechanisms for the formation of hydroxyl or alkoxyl radicals in the reactions between tetrachloro-p-benzoquinone (TCBQ) and organic hydroperoxides are crucial for better understanding the potential carcinogenicity of polyhalogenated quinones. Herein, the mechanism of the reaction between TCBQ and H2O2 has been systematically investigated at the B3LYP/6-311++G** level of theory in the presence of different numbers of water molecules. We report that the whole reaction can easily take place with the assistance of explicit water molecules. Namely, an initial intermediate is formed first. After that, a nucleophilic attack of H2O2 onto TCBQ occurs, which results in the formation of a second intermediate that contains an OOH group. Subsequently, this second intermediate decomposes homolytically through cleavage of the O-O bond to produce a hydroxyl radical. Energy analyses suggest that the nucleophilic attack is the rate-determining step in the whole reaction. The participation of explicit water molecules promotes the reaction significantly, which can be used to explain the experimental phenomena. In addition, the effects of F, Br, and CH3 substituents on this reaction have also been studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lanthanum Strontium Manganate (LSM) powders were synthesized by six different routes, namely solid state reaction, drip pyrolysis, citrate, sol-gel, carbonate and oxalate co-precipitation. The LSM samples, produced by firing to 1000 °C for 5 h were then characterized by way of XRD, TPD's of oxygen, TPR and catalytic activity for a simple oxidation reaction, that of carbon monoxide to carbon dioxide. It was found that although the six samples had similar compositions and surface areas they performed quite differently during catalytic characterization. These observed differences correlated more closely to the mode of synthesis, than to the physical properties of the powders, or their impurity levels, indicating that the surface structures created by the different syntheses perform very differently under catalysis conditions. Co-precipitation and drip pyrolysis produced structures that were most efficient at facilitating oxidation type reactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polycrystalline silver is used to catalytically oxidise methanol to formaldehyde. This paper reports the results of extensive investigations involving the use of environmental scanning electron microscopy (ESEM) to monitor structural changes in silver during simulated industrial reaction conditions. The interaction of oxygen, nitrogen, and water, either singly or in combination, with a silver catalyst at temperatures up to 973 K resulted in the appearance of a reconstructed silver surface. More spectacular was the effect an oxygen/methanol mixture had on the silver morphology. At a temperature of ca. 713 K pinholes were created in the vicinity of defects as a consequence of subsurface explosions. These holes gradually increased in size and large platelet features were created. Elevation of the catalyst temperature to 843 K facilitated the wholescale oxygen induced restructuring of the entire silver surface. Methanol reacted with subsurface oxygen to produce subsurface hydroxyl species which ultimately formed water in the subsurface layers of silver. The resultant hydrostatic pressure forced the silver surface to adopt a "hill and valley" conformation in order to minimise the surface free energy. Upon approaching typical industrial operating conditions widespread explosions occurred on the catalyst and it was also apparent that the silver surface was extremely mobile under the applied conditions. The interaction of methanol alone with silver resulted in the initial formation of pinholes primarily in the vicinity of defects, due to reaction with oxygen species incorporated in the catalyst during electrochemical synthesis. However, dramatic reduction in the hole concentration with time occurred as all the available oxygen became consumed. A remarkable correlation between formaldehyde production and hole concentration was found.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light absorption efficiency of heterogeneous catalysts has restricted their photocatalytic capability for commercially important organic synthesis. Here, we report a way of harvesting visible light efficiently to boost zeolite catalysis by means of plasmonic gold nanoparticles (Au-NPs) supported on zeolites. Zeolites possess strong Brønsted acids and polarized electric fields created by extra-framework cations. The polarized electric fields can be further intensified by the electric near-field enhancement of Au-NPs, which results from the localized surface plasmon resonance (LSPR) upon visible light irradiation. The acetalization reaction was selected as a showcase performed on MZSM-5 and Au/MZSM-5 (M = H+, Na+, Ca2+, or La3+). The density functional theory (DFT) calculations confirmed that the intensified polarized electric fields played a critical role in stretching the C = O bond of the reactants of benzaldehyde to enlarge their molecular polarities, thus allowing reactants to be activated more efficiently by catalytic centers so as to boost the reaction rates. This discovery should evoke intensive research interest on plasmonic metals and diverse zeolites with an aim to take advantage of sunlight for plasmonic devices, molecular electronics, energy storage, and catalysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mesoporous titania microspheres composed of nanosheets with exposed active facets were prepared by hydrothermal synthesis in the presence of hexafluorosilicic acid. They exhibited superior catalytic activity in the solvent-free synthesis of azoxybenzene by oxidation of aniline and could be used for 7 cycles with slight loss of activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasma-assisted magnetron sputtering with varying ambient conditions has been utilised to deposit Al-doped ZnO (AZO) transparent conductive thin films directly onto a glass substrate at a low substrate temperature of 400 °C. The effects of hydrogen addition on electrical, optical and structural properties of the deposited AZO films have been investigated using X-ray diffractometry (XRD), scanning electron microscopy (SEM), Hall effect measurements and UV–vis optical transmission spectroscopy. The results indicate that hydrogen addition has a remarkable effect on the film transparency and conductivity with the greatest effects observed with a hydrogen flux of approximately 3 sccm. It has been demonstrated that the conductivity and the average transmittance in the visible range can increase simultaneously contrary to the effects observed by other authors. In addition, hydrogen incorporation further leads to the absorption edge shifting to a shorter wavelength due to the Burstein–Moss effect. These results are of particular relevance to the development of the next generation of optoelectronic and photovoltaic devices based on highly transparent conducting oxides with controllable electronic and optical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanophase nc-Si/a-SiC films that contain Si quantum dots (QDs) embedded in an amorphous SiC matrix were deposited on single-crystal silicon substrates using inductively coupled plasma-assisted chemical vapor deposition from the reactive silane and methane precursor gases diluted with hydrogen at a substrate temperature of 200 °C. The effect of the hydrogen dilution ratio X (X is defined as the flow rate ratio of hydrogen-to-silane plus methane gases), ranging from 0 to 10.0, on the morphological, structural, and compositional properties of the deposited films, is extensively and systematically studied by scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, Raman spectroscopy, Fourier-transform infrared absorption spectroscopy, and X-ray photoelectron spectroscopy. Effective nanophase segregation at a low hydrogen dilution ratio of 4.0 leads to the formation of highly uniform Si QDs embedded in the amorphous SiC matrix. It is also shown that with the increase of X, the crystallinity degree and the crystallite size increase while the carbon content and the growth rate decrease. The obtained experimental results are explained in terms of the effect of hydrogen dilution on the nucleation and growth processes of the Si QDs in the high-density plasmas. These results are highly relevant to the development of next-generation photovoltaic solar cells, light-emitting diodes, thin-film transistors, and other applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphitization, a common process involving the transformation of metastable nongraphitic carbon into graphite is one of the major present-day challenges for micro- and nanocarbons due to their unique structural character and highly unusual thermal activation. Here we report on the successful graphitization of nanocrystalline carbon microcoils prepared by catalytic chemical vapor deposition and post-treated in argon atmosphere at temperatures ∼2500 °C for 2 h. The morphology, microstructure, and thermal properties of the carbon microcoils are examined in detail. The graphitization mechanism is discussed by invoking a model of structural transformation of the carbon microcoils. The results reveal that after graphitization the carbon microcoils are prominently purified and feature a clear helical morphology, as well as a more regular and ordered microstructure. The interlayer spacing of the carbon microcoils decreases from 0.36 to 0.34 nm, whereas the mean crystal sizes in the c - and a -directions increase from 1.64 to 2.04 nm and from 3.86 to 7.21 nm, respectively. Thermal treatment also substantially improves the antioxidation properties of the microcoils by lifting the oxidation onset temperature from 550 to 672 °C. This process may be suitable for other nongraphitic micro- and nanomaterials.