987 resultados para carbon stable isotope.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

'Hyperthermals' are intervals of rapid, pronounced global warming known from six episodes within the Palaeocene and Eocene epochs (~65-34 million years (Myr) ago) (Zachos et al., 2005, doi:10.1126/science.1109004; 2008, doi:10.1038/nature06588; Roehl et al., 2007, doi:10.1029/2007GC001784; Thomas et al., 2000; Cramer et al., 2003, doi:10.1029/2003PA000909; Lourens et al., 2005, doi:10.1038/nature03814; Petrizzo, 2005, doi:10.2973/odp.proc.sr.198.102.2005; Sexton et al., 2006, doi:10.1029/2005PA001253; Westerhold et al., 2007, doi:10.1029/2006PA001322; Edgar et al., 2007, doi:10.1038/nature06053; Nicolo et al., 2007, doi:10.1130/G23648A.1; Quillévéré et al., 2008, doi:10.1016/j.epsl.2007.10.040; Stap et al., 2010, doi:10.1130/G30777.1). The most extreme hyperthermal was the 170 thousand year (kyr) interval (Roehl et al., 2007) of 5-7 °C global warming (Zachos et al., 2008) during the Palaeocene-Eocene Thermal Maximum (PETM, 56 Myr ago). The PETM is widely attributed to massive release of greenhouse gases from buried sedimentary carbon reservoirs (Zachos et al., 2005; 2008; Lourenbs et al., 2005; Nicolo et al., 2007; Dickens et al., 1995, doi:10.1029/95PA02087; Dickens, 2000; 2003, doi:10.1016/S0012-821X(03)00325-X; Panchuk et al., 2008, doi:10.1130/G24474A.1) and other, comparatively modest, hyperthermals have also been linked to the release of sedimentary carbon (Zachos et al., 2008, Lourens et al., 2005; Nicolo et al., 2007; Dickens, 2003; Panchuk et al., 2003). Here we show, using new 2.4-Myr-long Eocene deep ocean records, that the comparatively modest hyperthermals are much more numerous than previously documented, paced by the eccentricity of Earth's orbit and have shorter durations (~40 kyr) and more rapid recovery phases than the PETM. These findings point to the operation of fundamentally different forcing and feedback mechanisms than for the PETM, involving redistribution of carbon among Earth's readily exchangeable surface reservoirs rather than carbon exhumation from, and subsequent burial back into, the sedimentary reservoir. Specifically, we interpret our records to indicate repeated, large-scale releases of dissolved organic carbon (at least 1,600 gigatonnes) from the ocean by ventilation (strengthened oxidation) of the ocean interior. The rapid recovery of the carbon cycle following each Eocene hyperthermal strongly suggests that carbon was resequestered by the ocean, rather than the much slower process of silicate rock weathering proposed for the PETM (Zachos et al., 2005; 2003). Our findings suggest that these pronounced climate warming events were driven not by repeated releases of carbon from buried sedimentary sources (Zachos et al., 2008, Lourens et al., 2005; Nicolo et al., 2007; Dickens, 2003; Panchuk et al., 2003) but, rather, by patterns of surficial carbon redistribution familiar from younger intervals of Earth history.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluctuations in the abundance of selected foraminiferal indicator species and diversity allowed the reconstruction of changes in deepwater oxygenation and monsoon-driven organic matter fluxes in the deep western Arabian Sea during the last 190 kyr. Times of maximum surface production coincide with periods of intensified SW monsoon as shown by the abundance of Globigerina bulloides and enhanced carbonate corrosion. Benthic ecosystem variability in the deep Arabian Sea is not exclusively driven by variations in monsoonal upwelling and related organic matter supply to the seafloor but also by changes in deepwater ventilation. Deepening of the base of the oxygen minimum zone (OMZ) below 1800 m water depth is strongly coherent on the precessional band but lags proxies of SW monsoon strength by 4 to 6 kyr. The "out-of-phase" relationship between OMZ deepening and maximum SW monsoon strength is explained by temporal changes in the advection of oxygen-rich deepwater masses of North Atlantic and Antarctic origin. This process affected the remineralization and burial efficiency of organic matter in the deep Arabian Sea, resulting in the observed phase lag between maximum monsoon strength and organic carbon preservation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A stable oxygen and carbon isotope stratigraphy is established for a Late Weichselian/Holocene glaciomarine/marine seguence in Andfjorden and Malangsdjupet on the continental shelf off Troms, Northern Norway. The stratigraphy demonstrates that the global signals, Termination I B and possibly also I A (upper parts), are present and radiocarbon date to 10.3-9.7 kyr B.P. and >14-13.5 kyr B.P., respectively. A temperature increase of 5°-6°C and possibly a small salinity increase occurred during Term. I. A near-glacial environment between 13 and 14 kyr B.P. was characterized by poorly ventilated bottom waters followed by a meltwater pulse at circa 13 kyr B.P. During the beginning intrusion of Atlantic Water between 13 and 10 kyr B.P., the bottom water was characterized by somewhat fluctuating temperatures and salinities. Temperatures close to those of the present were established around 9.7 kyr B.P. and seem to have been rather stable since.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stable carbon and nitrogen isotopic compositions as well as organic carbon and total nitrogen contents are reported for Site 645 in Baffin Bay and Sites 646 and 647 in the Labrador Sea. Both low-resolution analyses (1 sample/section) and high-resolution results (up to 7 samples/section) are presented. These records indicate that large-scale changes in productivity since the middle Miocene have occurred in Baffin Bay. Such changes are not evident in samples from the Labrador Sea. Isotopic records of all the sites are influenced strongly by rapidly changing influxes that combine terrigenous debris with planktonic production. In parts of the cores, relationships to other phenomena, such as ice stages, are present. However, these correlations are not common and indicate that these events were masked by the dynamic changes in sources of organic matter occurring in this complex system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep-sea sediment Ba* (Ba/Al2O3(sample) * 15% - Ba(aluminosilicate) records show increasing values synchronous with the evolution of the late Paleocene global d13C maximum, reflecting an increase in marine surface primary production and biogenic barite formation at this time. At two oligotrophic locations, Deep Sea Drilling Project (DSDP) Sites 384 and 527 in the North and South Atlantic, respectively, Ba* increases from 160-360 ppm in the early Paleocene to 1100-3000 ppm during the d13C maximum. At equatorial DSDP Site 577, positioned within or near the high-productivity zone, Ba* increases from ~15,500 ppm in the early Paleocene to ~25,400 ppm in conjunction with late Paleocene maximum d13C values. Linear fitted correlation plots of sediment Ba* content versus surface water d13C in all three regions support barite originating in the euphotic zone. The early to late Paleocene relative increase in Ba* illustrates how burial rates of Corg (relative to Al2O3) accelerated by a factor of ~1.8 and ~6.0 in the eutrophic and oligotrophic areas, respectively. A tentative estimate, weighing our result for the entire ocean, suggests that accumulation rates of organic carbon increased by a factor of 2 during the late Paleocene d13C maximum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interstitial water and sediment samples of the Integrated Ocean Drilling Program (IODP) expedition 313 "New Jersey Shallow Shelf" were analyzed for chemical composition and stable isotope ratios. A total of 222 water samples were collected from the cores by Rhizon samplers and squeezing of fresh core material. Water was analyzed for its stable oxygen and hydrogen isotope geochemistry (d2H and d18O) at sites M0027A and M0029A, and the carbon isotope composition of the dissolved inorganic carbon (d13CDIC) (all sites). In addition, organic material (Corg) and inorganic carbonates from sediments were analyzed for their carbon ratios (d13Corg and d13Ccarb), and in case of the carbonates also for oxygen (d18Ocarb). Carbon isotopes were also analyzed in samples containing enough methane gas (d13Cmeth). Pore fluids from site M0027A were analyzed for the sulfur isotope composition of dissolved sulfate (d34S). The combination of isotope analyses of all phases (interstitial water, sediment, and gas) with pore water chemistry is expected to enable a better understanding of processes in the sediment and will help to identify the origin of fluids under the New Jersey shelf.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detailed analyses of well-preserved carbonate samples from across the Cretaceous/Tertiary boundary in Hole 577 have revealed a significant decline in the d13C values of calcareous nannoplankton from the Maestrichtian to the Danian Age accompanied by a substantial reduction in carbonate accumulation rates. Benthic foraminifers, however, do not exhibit a shift in carbon composition similar to that recorded by the calcareous nannoplankton, but actually increase slightly over the same time interval. These results are similar to the earlier findings at two North Pacific Deep Sea Drilling Project locations, Sites 47.2 and 465, and are considered to represent a dramatic decrease in oceanic phytoplankton production associated with the catastrophic Cretaceous/Tertiary boundary extinctions. In addition, the change in carbon composition of calcareous nannoplankton across the Cretaceous/Tertiary boundary at Hole 577 is accompanied by only minor changes in the oxygen isotope trends of both calcareous nannoplankton and benthic foraminifers, suggesting that temperature variations in the North Pacific from the late Maestrichtian to the early Danian Age were insignificant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stable isotope data on benthic foraminifera from more than 30 cores on the northern Emperor Seamounts and in the Okhotsk Sea are synthesized in paleohydrographic profiles spanning the depth range 1000-4000 m. Holocene (core-top) benthic foraminiferal d18O and d13C data are calibrated to modern hydrographic properties through measurements of d13C of SumCO2 and d18O of seawater. Cibicidoides stable isotope ratios are close to the d13C and equilibrium d18O of seawater, whereas Uvigerina d18O and d13C are variably offset from Cibicidoides. Glacial maximum d13C of Cibicidoides displays a different vertical profile than that of the Holocene. When results are adjusted by +0.32 per mil to account for the secular change in d13C during the last glacial maximum, the data coincide with the modern seawater and foraminiferal curves deeper than ~2 km. However, at shallower depths d13C gradually increases by as much as 1 per mil above the modern value. Furthermore, above 2 km the benthic d18O decreases by ~0.5 per mil. These results are consistent with a benthic front at ~2 km in the North Pacific (see Herguera et al., 1992), but they differ from interpretations based on trace metal data which indicate a source of nutrient-depleted deep water during glaciation. The isotopic data suggest that during glaciation there was a better ventilated watermass at intermediate depths in the far northwestern Pacific, it was relatively fresher than deep waters there, and deep waters were as nutrient-rich as today.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lower Miocene through upper Pleistocene benthic foraminifer assemblage records from Ocean Drilling Program Site 751 on the Southern Kerguelen Plateau (57°44'S, water depth 1634 m) were combined with benthic and planktonic foraminifer oxygen and carbon isotope records and high-resolution CaCO3 data from the same site. Implications for the Neogene productivity and paleoceanography of the southern Indian Ocean are discussed. We used distinctive features of the Miocene d18O and d13C curves for stratigraphic correlation. Coinciding with a lower middle Miocene hiatus from 14.2 to 13.4 Ma, there was a rapid increase in benthic d18O values by 1.2 per mil. This distinct increase occurs in middle Miocene benthic foraminifer oxygen isotope curves from all oceans. No major change, however, in benthic foraminifer faunal composition occurred in this period of growth of the Antarctic ice cap and cooling of deep ocean waters (14.9-14.2 Ma). A drastic change in benthic foraminifer faunas coincided with a hiatus from 8.4 to 5.9 Ma. Shortly after this hiatus, in the latest Miocene, the CaCO3 content of the sediments dropped from 75% to 0%. From that time ( 5.8 Ma) through the early Pliocene, Site 751 has been situated beneath a high biogenic siliceous productivity zone. Carbonate contents of upper Pliocene and Pleistocene sediments vary between 20% and 70%. The benthic foraminifer faunas in the uppermost Pliocene and lower Pleistocene reflect strong bottom current conditions, in contrast to those in the upper Pleistocene, which indicate calm sedimentation and high food supply. High d13C values of planktonic foraminifers compared with low values of benthic foraminifers suggest high primary productivity in the late Pleistocene. The changes in productivity were probably a result of latitudinal migration and meandering of the Polar Frontal Zone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon isotopically based estimates of CO2 levels have been generated from a record of the photosynthetic fractionation of 13C (epsilon p) in a central equatorial Pacific sediment core that spans the last ~255 ka. Contents of 13C in phytoplanktonic biomass were determined by analysis of C37 alkadienones. These compounds are exclusive products of Prymnesiophyte algae which at present grow most abundantly at depths of 70-90 m in the central equatorial Pacific. A record of the isotopic compostion of dissolved CO2 was constructed from isotopic analyses of the planktonic foraminifera Neogloboquadrina dutertrei, which calcifies at 70-90 m in the same region. Values of epsilon p, derived by comparison of the organic and inorganic delta values, were transformed to yield concentrations of dissolved CO2 (c e) based on a new, site-specific calibration of the relationship between epsilon p and c e. The calibration was based on reassessment of existing epsilon p versus c e data, which support a physiologically based model in which epsilon p is inversely related to c e. Values of PCO2, the partial pressure of CO2 that would be in equilibrium with the estimated concentrations of dissolved CO2, were calculated using Henry's law and the temperature determined from the alkenone-unsaturation index UK 37. Uncertainties in these values arise mainly from uncertainties about the appropriateness (particularly over time) of the site-specific relationship between epsilon p and 1/c e. These are discussed in detail and it is concluded that the observed record of epsilon p most probably reflects significant variations in Delta pCO2, the ocean-atmosphere disequilibrium, which appears to have ranged from ~110 µatm during glacial intervals (ocean > atmosphere) to ~60 µatm during interglacials. Fluxes of CO2 to the atmosphere would thus have been significantly larger during glacial intervals. If this were characteristic of large areas of the equatorial Pacific, then greater glacial sinks for the equatorially evaded CO2 must have existed elsewhere. Statistical analysis of air-sea pCO2 differences and other parameters revealed significant (p < 0.01) inverse correlations of Delta pCO2 with sea surface temperature and with the mass accumulation rate of opal. The former suggests response to the strength of upwelling, the latter may indicate either drawdown of CO2 by siliceous phytoplankton or variation of [CO2]/[Si(OH)4] ratios in upwelling waters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Late Paleocene and Early Eocene were characterised by warm greenhouse climates, punctuated by a series of rapid warming and ocean acidification events known as "hyperthermals", thought to have been paced or triggered by orbital cycles. While these hyperthermals, such as the Paleocene Eocene Thermal Maximum (PETM), have been studied in great detail, the background low-amplitude cycles seen in carbon and oxygen-isotope records throughout the Paleocene-Eocene have hitherto not been resolved. Here we present a 7.7 million year (myr) long, high-resolution, orbitally-tuned, benthic foraminiferal stable-isotope record spanning the late Paleocene and early Eocene interval (~52.5 - 60.5 Ma) from Ocean Drilling Program (ODP) Site 1262, South Atlantic. This high resolution (~2-4 kyr) record allows the changing character and phasing of orbitally-modulated cycles to be studied in unprecedented detail as it reflects the long-term trend in carbon cycle and climate over this interval. The main pacemaker in the benthic oxygen-isotope (d18O) and carbon-isotope (d13C) records from ODP Site 1262, are the long (405 kyr) and short (100 kyr) eccentricity cycles, and precession (21 kyr). Obliquity (41 kyr) is almost absent throughout the section except for a few brief intervals where it has a relatively weak influence. During the course of the Early Paleogene record, and particularly in the latest Paleocene, eccentricity-paced negative carbon-isotope excursions (d13C, CIEs) and coeval negative oxygen-isotope (d18O) excursions correspond to low carbonate (CaCO3) and coarse fraction (%CF) values due to increased carbonate dissolution, suggesting shoaling of the lysocline and accompanied changes in the global exogenic carbon cycle. These negative CIEs and d18O events coincide with maxima in eccentricity, with changes in d18O leading changes in d13C by ~6 (±5) kyr in the 405-kyr band and by ~3 (±1) kyr in the higher frequency 100-kyr band on average. However, these phase lags are not constant, with the lag in the 405-kyr band extending from ~4 (±5) kyr to ~21 (±2) kyr from the late Paleocene to the early Eocene, suggesting a progressively weaker coupling of climate and the carbon-cycle with time. The higher amplitude 405-kyr cycles in the latest Paleocene are associated with changes in bottom water temperature of 2-4ºC, while the most prominent 100 kyr-paced cycles can be accompanied by changes of up to 1.5ºC. Comparison of the 1262 record with a lower resolution, but orbitally-tuned benthic record for Site 1209 in the Pacific allows for verification of key features of the benthic isotope records which are global in scale including a key warming step at 57.7 Ma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spatial variability of biomass and stable isotopes in plankton size fractions in the upper 200 m was studied in a high spatial resolution transect along 24°N from Canary Islands to Florida (January - March 2011) during Leg 8 of the Malaspina-2010 expedition (http://www.expedicionmalaspina.es) to determine nitrogen and carbon sources. Plankton samples were collected by vertical tows of a microplankton net (40 mm mesh size) and a mesoplankton net (200 mm mesh size) through the upper 200 m of the water column. Sampling was between 10:00 and 16:00 h GMT. Plankton was separated into five size fractions (40 - 200, 200 - 500, 500 - 1000, 1000 - 2000 and > 2000 mm) by gentle filtration of the samples by a graded series of nylon sieves (2000, 1000, 500, 200 and 40 mm). Large gelatinous organisms were removed before filtration. Aliquots for each size fraction were collected on pre-weighed glass-fibre filters, dried (60°C, 48 h) and stored in a desiccator before determination of biomass (dry weight), carbon and nitrogen content and natural abundance of stable carbon and nitrogen isotopes ashore. Vertical advection of waters predominated in lateral zones while the central Atlantic (30-70°W) was characterized by a strong stratification and oligotrophic surface waters. Plankton biomass was low in the central zone and high in both eastern and western sides, with most of the variability due to either large (>2000 µm) and small plankton (<500 µm). Carbon isotopes reflected mainly the advection the deep water in lateral zones. Stable nitrogen isotopes showed a nearly symmetrical spatial distribution in all fractions, with the lowest values (delta15N <1per mill) in the central zone, and were inversely correlated to carbon stable isotopes (delta13C) and to the abundance of the nitrogen-fixer Trichodesmium. Diazotrophy was estimated to account for >50% of organic nitrogen in the central zone, and even >30% in eastern and western zones. The impact of diazotrophy increased with the size of the organisms, supporting the wide participation of all trophic levels in the processing of recently fixed nitrogen. These results indicate that atmospheric sources of carbon and nitrogen prevail over deep water sources in the subtropical North Atlantic and that the zone influenced by diazotrophy is much larger than reported in previous studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During ODP Leg 111 Hole 504B was extended 212 m deeper into the sheeted dikes of oceanic Layer 2, for a total penetration of 1288 m within basement. Study of the mineralogy, chemistry, and stable isotopic compositions of the rocks recovered on Leg 111 has confirmed and extended the previous model for hydrothermal alteration at the site: axial greenschist hydrothermal metamorphism was followed by seawater recharge and subsequent off-axis alteration. The dikes are depleted in 18O (mean delta18O = +5.1 ? +/- 0.6 ?) relative to fresh mid-ocean ridge basalt. Oxygen isotopic data on whole rocks and isolated secondary minerals indicate temperatures during axial metamorphism of 250°-350°C and water/rock ratios about one. Increasing amounts of actinolite with depth in the dike section, however, suggest that temperatures increased downward in the dikes. Pyrite + pyrrhotite + chalcopyrite + magnetite was the stable sulfide + oxide mineral assemblage during axial alteration, but these minerals partly re-equilibrated later at temperatures less than 200°C. The dikes sampled on Leg 111 contain an average of 500 ppm sulfur, slightly lower than igneous values. The delta34S values of sulfide average 0?, which indicates the presence of basaltic sulfide and incorporation of little or no seawater-derived sulfide into the rocks. These data are consistent with models for the presence of rock-dominated sulfur in deep hydrothermal fluids. The presence of anhydrite at 1176 m within basement indicates that unaltered seawater can penetrate to significant depths in the crust during recharge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deepwater circulation plays an important role in climate modulation through its redistribution of heat and salt and its control of atmospheric CO2. Oppo and Fairbanks (1987, doi:10.1016/0012-821X(87)90183-X) showed that the Southern Ocean is an excellent monitor of deepwater circulation changes for two reasons: (1) the Southern Ocean is a mixing reservoir for incoming North Atlantic Deep Water and recirculated water from the Pacific and Indian oceans; and (2) the nutrient/delta13C tracers of deepwater are not significantly changed by surficial processes within the Southern Ocean. We can extend these principles to the late Miocene because tectonic changes in the Oligocene and early and middle Miocene developed near-modern basinal configurations. However, on these time scales, changes in the oceanic carbon reservoir and mean ocean nutrient levels also affect the delta13C differences between ocean basins. From 9.8 to 9.3 Ma, Southern Ocean delta13C values oscillated between high North Atlantic values and low Pacific values. The Southern Ocean recorded delta13C values similar to Pacific values from 9.2 to 8.9 Ma, reflecting a low contribution of Northern Component Water (NCW). The delta13C differences between the NCW and Pacific Outflow Water (POW) end-members were low from 8.9 to 8.0 Ma, making it difficult to discern circulation patterns. NCW production may have completely shutdown at 8.6 Ma, allowing Southern Component Water (SCW) to fill the North Atlantic and causing the delta13C values in the North Atlantic, Pacific, and Southern oceans to converge. Deepwater delta13C patterns resembling the modern distributions evolved by 7.0 Ma: delta13C values were near 1.0 per mil in the North Atlantic; 0.0 per mil in the Pacific; and 0.5 per mil in the Southern Ocean. Development of near-modern delta13C distributions by 7.0 Ma resulted not only from an increase in NCW flux but also from an increase in deepwater nutrient levels. Both of these processes increased the delta13C difference between the North Atlantic and Pacific oceans. Deepwater circulation patterns similar to today's operated as early as 9.8 Ma, but were masked by the lower nutrient/delta13C differences. During the late Miocene, 'interglacial' intervals prevailed during intervals of NCW production, while 'glacial' intervals occurred during low NCW production.