914 resultados para carbon emissions
Resumo:
18 p.
Resumo:
Trocadores de calor são equipamentos muito utilizados na indústria de processos com o objetivo de modificar a temperatura e/ou o estado físico de correntes materiais. Uma rede de trocadores de calor pode ser definida como um grupo de trocadores de calor interligados, a fim de reduzir as necessidades de energia de um sistema. No entanto, durante a operação de uma rede, a eficiência térmica dos trocadores de calor diminui devido à deposição. Esse efeito promove o aumento dos custos de combustível e das emissões de carbono. Uma alternativa para mitigar este problema baseia-se no estabelecimento de uma programação das limpezas dos trocadores de calor durante a operação de rede. Este tipo de abordagem ocasiona uma situação na qual ocorre um conflito de escolha: a limpeza de um trocador de calor pode recuperar a sua eficiência térmica, mas implica custos adicionais, tais como, mão-de-obra, produtos químicos, etc. Além disso, durante a limpeza, o trocador de calor tem de ser contornado por uma corrente de by-pass, o que aumenta temporariamente o consumo de energia. Neste contexto, o presente trabalho tem como objetivo explorar diferentes técnicas de otimização envolvendo métodos estocásticos e heurísticos. Com este objetivo foi desenvolvido um conjunto de códigos computacionais integrados que envolvem a simulação pseudo-estacionária do comportamento da rede relacionado com incrustações e a otimização da programação das limpezas deste tipo de sistema. A solução do problema indica os períodos de tempo para a limpeza de cada trocador de calor. Na abordagem estocástica empregada, os parâmetros do algoritmo genético, como probabilidade de crossover e probabilidade de mutação, foram calibrados para o presente problema. A abordagem heurística desenvolvida se deu através da sequência do conjunto de movimentos zero, um e dois. De forma alternativa, desenvolveu-se a metodologia heurística recursiva na qual os conjuntos de movimentos um e dois foram empregados recursivamente. Também foi desenvolvida a abordagem híbrida que consistiu em diferentes combinações da metodologia estocástica e heurística. A análise comparativa entre as metodologias empregadas teve como objetivo avaliar a abordagem mais adequada para o presente problema da programação das limpezas em termos de função objetivo e esforço computacional. O desempenho da abordagem proposta foi explorado através de uma série de exemplos, incluindo uma refinaria real brasileira. Os resultados foram promissores, indicando que as técnicas de otimização analisadas neste trabalho podem ser abordagens interessantes para operações que envolvam redes de trocadores de calor. Dentre as abordagens de otimização analisadas, a metodologia heurística desenvolvida no presente trabalho apresentou os melhores resultados se mostrando competitiva frente às abordagens comparadas da literatura
Resumo:
468 p.
Resumo:
Reusing steel and aluminum components would reduce the need for new production, possibly creating significant savings in carbon emissions. Currently, there is no clearly defined set of strategies or barriers to enable assessment of appropriate component reuse; neither is it possible to predict future levels of reuse. This work presents a global assessment of the potential for reusing steel and aluminum components. A combination of top-down and bottom-up analyses is used to allocate the final destinations of current global steel and aluminum production to product types. A substantial catalogue has been compiled for these products characterizing key features of steel and aluminum components including design specifications, requirements in use, and current reuse patterns. To estimate the fraction of end-of-life metal components that could be reused for each product, the catalogue formed the basis of a set of semistructured interviews with industrial experts. The results suggest that approximately 30% of steel and aluminum used in current products could be reused. Barriers against reuse are examined, prompting recommendations for redesign that would facilitate future reuse.
Resumo:
Half of the world's annual production of steel is used in constructing buildings and infrastructure. Producing this steel causes significant amounts of carbon dioxide to be released into the atmosphere. Climate change experts recommend this amount be halved by 2050; however steel demand is predicted to have doubled by this date. As process efficiency improvements will not reach the required 75% reduction in emissions per unit steel output, new methods must be examined to deliver service using less steel production. To apply such methods successfully to construction, it must first be known where steel is used currently within the industry. This information is not available so a methodology is proposed to estimate it from known data. Results are presented for steel flows by product for ten construction sectors for both the UK and the world in 2006. An estimate for steel use within a 'typical' building is also published for the first time. Industrial buildings and utility infrastructure are identified as the largest end-uses of steel, while superstructure is confirmed as the main use of steel in a building. The results highlight discrepancies in previous steel estimates and life-cycle assessments, and will inform future research on lowering demand for steel, hence reducing carbon emissions. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Space heating accounts for a large portion of the world's carbon dioxide emissions. Ground Source Heat Pumps (GSHPs) are a technology which can reduce carbon emissions from heating and cooling. GSHP system performance is however highly sensitive to deviation from design values of the actual annual energy extraction/rejection rates from/to the ground. In order to prevent failure and/or performance deterioration of GSHP systems it is possible to incorporate a safety factor in the design of the GSHP by over-sizing the ground heat exchanger (GHE). A methodology to evaluate the financial risk involved in over-sizing the GHE is proposed is this paper. A probability based approach is used to evaluate the economic feasibility of a hypothetical full-size GSHP system as compared to four alternative Heating Ventilation and Air Conditioning (HVAC) system configurations. The model of the GSHP system is developed in the TRNSYS energy simulation platform and calibrated with data from an actual hybrid GSHP system installed in the Department of Earth Science, University of Oxford, UK. Results of the analysis show that potential savings from a full-size GSHP system largely depend on projected HVAC system efficiencies and gas and electricity prices. Results of the risk analysis also suggest that a full-size GSHP with auxiliary back up is potentially the most economical system configuration. © 2012 Elsevier Ltd.
Resumo:
This study investigates the key drivers affecting emission increases in terms of population growth, economic growth, industrial transformation, and energy use in six Chinese megacities: Beijing, Shanghai, Tianjin, Chongqing, Guangzhou, and Hong Kong. The six cities represent the most-developed regions in China and they have similar per capita carbon dioxide (CO 2) emissions as many developed countries. There is an urgent need to quantify the magnitude of each factor in driving the emissions changes in those cities so that a potential bottom-up climate mitigation policy design at the city and sectoral levels can be initiated. We adopt index decomposition analysis and present the results in both additive and multiplicative approaches to reveal the absolute and relative levels of each factor in driving emission changes during 1985-2007. Among all cities, economic effect and energy intensity effect have always been the two dominant factors contributing to the changes in carbon emissions. This study reveals that there are large variations in the ways driving forces contribute to emission levels in different cities and industrial sectors. © 2012 by Yale University.
Resumo:
Steel production accounts for 25% of industrial carbon emissions. Long-term forecasts of steel demand and scrap supply are needed to develop strategies for how the steel industry could respond to industrialization and urbanization in the developing world while simultaneously reducing its environmental impact, and in particular, its carbon footprint. We developed a dynamic stock model to estimate future final demand for steel and the available scrap for 10 world regions. Based on evidence from developed countries, we assumed that per capita in-use stocks will saturate eventually. We determined the response of the entire steel cycle to stock saturation, in particular the future split between primary and secondary steel production. During the 21st century, steel demand may peak in the developed world, China, the Middle East, Latin America, and India. As China completes its industrialization, global primary steel production may peak between 2020 and 2030 and decline thereafter. We developed a capacity model to show how extensive trade of finished steel could prolong the lifetime of the Chinese steelmaking assets. Secondary steel production will more than double by 2050, and it may surpass primary production between 2050 and 2060: the late 21st century can become the steel scrap age.
Resumo:
Using energy more efficiently is essential if carbon emissions are to be reduced. According to the International Energy Agency (IEA), energy efficiency improvements represent the largest and least costly savings in carbon emissions, even when compared with renewables, nuclear power and carbon capture and storage. Yet, how should future priorities be directed? Should efforts be focused on light bulbs or diesel engines, insulating houses or improving coal-fired power stations? Previous attempts to assess energy efficiency options provide a useful snapshot for directing short-term responses, but are limited to only known technologies developed under current economic conditions. Tomorrow's economic drivers are not easy to forecast, and new technical solutions often present in a disruptive manner. Fortunately, the theoretical and practical efficiency limits do not vary with time, allowing the uncertainty of economic forecasts to be avoided and the potential of yet to be discovered efficient designs to be captured. This research aims to provide a rational basis for assessing all future developments in energy efficiency. The global fow of energy through technical devices is traced from fuels to final services, and presented as an energy map to convey visually the scale of energy use. An important distinction is made between conversion devices, which upgrade energy into more useable forms, and passive systems, from which energy is lost as low temperature heat, in exchange for final services. Theoretical efficiency limits are calculated for conversion devices using exergy analysis, and show a 89% potential reduction in energy use. Efforts should be focused on improving the efficiency of, in relative order: biomass burners, refrigeration systems, gas burners and petrol engines. For passive systems, practical utilisation limits are calculated based on engineering models, and demonstrate energy savings of 73% are achievable. Significant gains are found in technical solutions that increase the thermal insulation of building fabrics and reduce the mass of vehicles. The result of this work is a consistent basis for comparing efficiency options, that can enable future technical research and energy policy to be directed towards the actions that will make the most difference.
Resumo:
Cities may be responsible for up to 70% of global carbon emissions and 75% of global energy consumption and by 2050 it is estimated that 70% of the world's population could live in cities. The critical challenge for contemporary urbanism, therefore, is to understand how to develop the knowledge, capacity and capability for public agencies, the private sector and multiple users in city regions systemically to re-engineer their built environment and urban infrastructure in response to climate change and resource constraints. Re-Engineering the City 2020-2050: Urban Foresight and Transition Management (Retrofit 2050) is a major new interdisciplinary project funded under the Engineering and Physical Science Research Council's (EPSRC) Sustainable Urban Environments Programme which seeks to address this challenge. This briefing describes the background and conceptual framing of Retrofit 2050 project, its aims and objectives and research approach.
Resumo:
Material production, and associated carbon emissions, could be reduced by reusing products instead of landfilling or recycling them. Steel beams are well suited to reuse, but are difficult to reuse when connected compositely to concrete slabs using welded studs. A demountable connection would allow composite performance but also permit reuse of both components at end-of-life. Three composite beams, of 2 m, 10 m and 5 m length, are constructed using M20 bolts as demountable shear connectors. The beams are tested in three-, six- and four-point bending, respectively. The former two are loaded to service, unloaded, demounted and reassembled; all three are tested to failure. The results show that all three have higher strengths than predicted using Eurocode 4. The longer specimens have performance similar to previously published comparable welded-connector composite beam results. This suggests that demountable composite beams can be safely used and practically reused, thus reducing carbon emissions. © 2013 Elsevier B.V. All rights reserved.
What are the local impacts of energy systems on marine ecosystem services: a systematic map protocol
Resumo:
Background: Increasing concentrations of atmospheric greenhouse gases (GHG) and its impact on the climate has resulted in many international governments committing to reduce their GHG emissions. The UK, for example, has committed to reducing its carbon emissions by 80% by 2050. Suggested ways of reaching such a target are to increase dependency on offshore wind, offshore gas and nuclear. It is not clear, however, how the construction, operation and decommissioning of these energy systems will impact marine ecosystem services, i.e. the services obtained by people from the natural environment such as food provisioning, climate regulation and cultural inspiration. Research on ecosystem service impacts associated with offshore energy technologies is still in its infancy. The objective of this review is to bolster the evidence base by firstly, recording and describing the impacts of energy technologies at the marine ecosystems and human level in a consistent and transparent way; secondly, to translate these ecosystem and human impacts into ecosystem service impacts by using a framework to ensure consistency and comparability. The output of this process will be an objective synthesis of ecosystem service impacts comprehensive enough to cover different types of energy under the same analysis and to assist in informing how the provision of ecosystem services will change under different energy provisioning scenarios. Methods: Relevant studies will be sourced using publication databases and selected using a set of selection criteria including the identification of: (i) relevant subject populations such as marine and coastal species, marine habitat types and the general public; (ii) relevant exposure types including offshore wind farms, offshore oil and gas platforms and offshore structures connected with nuclear; (iii) relevant outcomes including changes in species structure and diversity; changes in benthic, demersal and pelagic habitats; and changes in cultural services. The impacts will be synthesised and described using a systematic map. To translate these findings into ecosystem service impacts, the Common International Classification of Ecosystem Services (CICES) and Millennium Ecosystem Assessment (MEA) frameworks are used and a detailed description of the steps taken provided to ensure transparency and replicability.
Resumo:
This paper investigates how the Kyoto Protocol has framed political discourse and policy development of greenhouse gas mitigation in Australia. We argue that ‘Kyoto’ has created a veil over the climate issue in Australia in a number of ways. Firstly, its symbolic power has distracted attention from actual environmental outcomes while its accounting rules obscure the real level of carbon emissions and structural trends at the nation-state level. Secondly, a public policy tendency to commit to far off emission targets as a compromise to implementing legislation in the short term has also emerged on the back of Kyoto-style targets. Thirdly, Kyoto’s international flexibility mechanisms can lead to the diversion of mitigation investment away from the nation-state implementing carbon legislation. A final concern of the Kyoto approach is how it has shifted focus away from Australia as the world’s largest coal exporter towards China, its primary customer. While we recognise the crucial role aspirational targets and timetables play in capturing the imagination and coordinating action across nations, our central theme is that ‘Kyoto’ has overshadowed the implementation of other policies in Australia. Understanding how ‘Kyoto’ has framed debate and policy is thus crucial to promoting environmentally effective mitigation measures as nation-states move forward from COP15 in Copenhagen to forge a post-Kyoto international agreement. Recent elections in 2009 in Japan and America and developments at COP15 suggest positive scope for international action on climate change. However, the lesson from the 2007 election and subsequent events in Australia is a caution against elevating the symbolism of ‘Kyoto-style’ targets and timetables above the need for implementation of mitigation policies at the nation-state level
Resumo:
By 2015, with the proliferation of wireless multimedia applications and services (e.g., mobile TV, video on demand, online video repositories, immersive video interaction, peer to peer video streaming, and interactive video gaming), and any-time anywhere communication, the number of smartphones and tablets will exceed 6.5 billion as the most common web access devices. Data volumes in wireless multimedia data-intensive applications and mobile web services are projected to increase by a factor of 10 every five years, associated with a 20 percent increase in energy consumption, 80 percent of which is multimedia traffic related. In turn, multimedia energy consumption is rising at 16 percent per year, doubling every six years. It is estimated that energy costs alone account for as much as half of the annual operating expenditure. This has prompted concerted efforts by major operators to drastically reduce carbon emissions by up to 50 percent over the next 10 years. Clearly, there is an urgent need for new disruptive paradigms of green media to bridge the gap between wireless technologies and multimedia applications.
Resumo:
Dissolved Air Flotation (DAF) is a well-known coagulation-flotation system applied at large scale for microalgae harvesting. Compared to conventional harvesting technologies DAF allows high cell recovery at lower energy demand. By replacing microbubbles with microspheres, the innovative Ballasted Dissolved Air Flotation (BDAF) technique has been reported to achieve the same algae cell removal efficiency, while saving up to 80% of the energy required for the conventional DAF unit. Using three different algae cultures (Scenedesmus obliquus, Chlorella vulgaris and Arthrospira maxima), the present work investigated the practical, economic and environmental advantages of the BDAF system compared to the DAF system. 99% cells separation was achieved with both systems, nevertheless, the BDAF technology allowed up to 95% coagulant reduction depending on the algae species and the pH conditions adopted. In terms of floc structure and strength, the inclusion of microspheres in the algae floc generated a looser aggregate, showing a more compact structure within single cell alga, than large and filamentous cells. Overall, BDAF appeared to be a more reliable and sustainable harvesting system than DAF, as it allowed equal cells recovery reducing energy inputs, coagulant demand and carbon emissions. © 2014 Elsevier Ltd.