965 resultados para candidate gene


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nonsyndromic cleft lip with or without cleft palate (NSCLP), a common, complex orofacial birth defect that affects approximately 4,000 newborns each year in the United States, is caused by both genetic and environmental factors. Orofacial clefts affect the mouth and nose, causing severe deformity of the face, which require medical, dental and speech therapies. Despite having substantial genetic liability, less than 25% of the genetic contribute to NSCLP has been identified. The studies described in this thesis were performed to identify genes that contribute to NSCLP and to demonstrate the role of these genes in normal craniofacial development. Using genome scan and candidate gene approaches, novel associations with NSCLP were identified. These include MYH9 (7 SNPs, 0.009≤p<0.05), Wnt3A (4 SNPs, 0.001≤p≤0.005), Wnt11 (2 SNPs, 0.001≤p≤0.01) and CRISPLD2 (4 SNPs, 0.001≤p<0.05). The most interesting findings were for CRISPLD2. This gene is expressed in the fused mouse palate at E17.5. In zebrafish, crispld2 localized to the craniofacial region by one day post fertilization. Morpholino knockdown of crispld2 resulted in a lower survival rates and altered neural crest cell (NCC) clustering. Because NCCs form the tissues that populate the craniofacies, this NCC abnormality resulted in cartilage abnormalities of the jaw including fewer ceratobranchial cartilages forming the lower jaw (three pairs compared to five) and broader craniofacies compared to wild-type zebrafish. These findings suggest that the CRISPLD2 gene plays an important role in normal craniofacial development and perturbation of this gene in humans contributes to orofacial clefting. Overall, these results are important because they contribute to our understanding of normal craniofacial development and orofacial clefting etiology, information that can be used to develop better methods to diagnose, counsel and potentially treat NSCLP patients.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

OBJECTIVES: We evaluated ankyrin repeat domain 1 (ANKRD1), the gene encoding cardiac ankyrin repeat protein (CARP), as a novel candidate gene for dilated cardiomyopathy (DCM) through mutation analysis of a cohort of familial or idiopathic DCM patients, based on the hypothesis that inherited dysfunction of mechanical stretch-based signaling is present in a subset of DCM patients. BACKGROUND: CARP, a transcription coinhibitor, is a member of the titin-N2A mechanosensory complex and translocates to the nucleus in response to stretch. It is up-regulated in cardiac failure and hypertrophy and represses expression of sarcomeric proteins. Its overexpression results in contractile dysfunction. METHODS: In all, 208 DCM patients were screened for mutations/variants in the coding region of ANKRD1 using polymerase chain reaction, denaturing high-performance liquid chromatography, and direct deoxyribonucleic acid sequencing. In vitro functional analyses of the mutation were performed using yeast 2-hybrid assays and investigating the effect on stretch-mediated gene expression in myoblastoid cell lines using quantitative real-time reverse transcription-polymerase chain reaction. RESULTS: Three missense heterozygous ANKRD1 mutations (P105S, V107L, and M184I) were identified in 4 DCM patients. The M184I mutation results in loss of CARP binding with Talin 1 and FHL2, and the P105S mutation in loss of Talin 1 binding. Intracellular localization of mutant CARP proteins is not altered. The mutations result in differential stretch-induced gene expression compared with wild-type CARP. CONCLUSIONS: ANKRD1 is a novel DCM gene, with mutations present in 1.9% of DCM patients. The ANKRD1 mutations may cause DCM as a result of disruption of the normal cardiac stretch-based signaling.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Retinitis pigmentosa (RP) is an inherited retinal degenerative disease that is the leading cause of inherited blindness worldwide. Characteristic features of the disease include night blindness, progressive loss of visual fields, and deposition of pigment on the retina in a bone spicule-like pattern. RP is marked by extreme genetic heterogeneity with at least 19 autosomal dominant, autosomal recessive and X-linked loci identified. RP10, which maps to chromosome 7q, was the fifth autosomal dominant RP locus identified, and accounts for the early-onset disease in two independent families. Extensive linkage and haplotype analyses have been performed in these two families which have allowed the assignment of the disease locus to a 5-cM region on chromosome 7q31.3. In collaboration with Dr. Eric Green (National Center for Human Genome Research, National Institutes of Health), a well-characterized physical map of the region was constructed which includes YAC, BAC and cosmid coverage. The entire RP10 critical region resides within a 9-Mb well-characterized YAC contig. These physical maps not only provided the resources to undertake the CAIGES (cDNA amplification for identification of genomic expressed sequences) procedure for identification of retinal candidate genes within the critical region, but also identified a number of candidate genes, including transducin-$\gamma$ and blue cone pigment genes. All candidate genes examined were excluded. In addition, a number of ESTs were mapped within the critical region. EST20241, which was isolated from an eye library, corresponded to the 3$\sp\prime$ region of the ADP-ribosylation factor (ARF) 5 gene. ARF5, with its role in vesicle transport and possible participation in the regulation of the visual transduction pathway, became an extremely interesting candidate gene. Using a primer walking approach, the entire 3.2 kb genomic sequence of the ARF5 gene was generated and developed intronic primers to screen for coding region mutations in affected family members. No mutations were found in the ARF5 gene, however, a number of additional ESTs have been mapped to the critical region, and, as the large-scale sequencing projects get underway, megabases of raw sequence data from the RP10 region are becoming available. These resources will hasten the isolation and characterization of the RP10 gene. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recurrent airway obstruction is one of the most common airway diseases affecting mature horses. Increased bronchoalveolar mucus, neutrophil accumulation in airways, and airway obstruction are the main features of this disease. Mucociliary clearance is a key component of pulmonary defense mechanisms. Cilia are the motile part of this system and a complex linear array of dynein motors is responsible for their motility by moving along the microtubules in the axonemes of cilia and flagella. We previously detected a QTL for RAO on ECA 13 in a half-sib family of European Warmblood horses. The gene encoding DNAH3 is located in the peak of the detected QTL and encodes a dynein subunit. Therefore, we analysed this gene as a positional and functional candidate gene for RAO. In a mutation analysis of all 62 exons we detected 53 new polymorphisms including 7 non-synonymous variants. We performed an association study using 38 polymorphisms in a cohort of 422 animals. However, after correction for multiple testing we did not detect a significant association of any of these polymorphisms with RAO (P>0.05). Therefore, it seems unlikely that variants at the DNAH3 gene are responsible for the RAO QTL in European Warmblood horses.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Inherited neurodegenerative disorders are debilitating diseases that occur across different species. We have performed clinical, pathological and genetic studies to characterize a novel canine neurodegenerative disease present in the Lagotto Romagnolo dog breed. Affected dogs suffer from progressive cerebellar ataxia, sometimes accompanied by episodic nystagmus and behavioral changes. Histological examination revealed unique pathological changes, including profound neuronal cytoplasmic vacuolization in the nervous system, as well as spheroid formation and cytoplasmic aggregation of vacuoles in secretory epithelial tissues and mesenchymal cells. Genetic analyses uncovered a missense change, c.1288G>A; p.A430T, in the autophagy-related ATG4D gene on canine chromosome 20 with a highly significant disease association (p = 3.8 x 10-136) in a cohort of more than 2300 Lagotto Romagnolo dogs. ATG4D encodes a poorly characterized cysteine protease belonging to the macroautophagy pathway. Accordingly, our histological analyses indicated altered autophagic flux in affected tissues. The knockdown of the zebrafish homologue atg4da resulted in a widespread developmental disturbance and neurodegeneration in the central nervous system. Our study describes a previously unknown canine neurological disease with particular pathological features and implicates the ATG4D protein as an important autophagy mediator in neuronal homeostasis. The canine phenotype serves as a model to delineate the disease-causing pathological mechanism(s) and ATG4D function, and can also be used to explore treatment options. Furthermore, our results reveal a novel candidate gene for human neurodegeneration and enable the development of a genetic test for veterinary diagnostic and breeding purposes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Frequent loss of heterozygosity (LOH) at specific chromosomal regions are highly associated with the inactivation of tumor suppressor genes (TSGs) (Weinberg, 1991; Bishop, 1989). Chromosome 8p is the most frequently reported site of LOH (∼60%) in prostate cancer (PC), suggesting that there may be inactivated TSG(s) involved in PC on chromosome 8p. (Bergerheim et. al., 1991; Kagan et. al., 1995). In order to identify the smallest common regions of frequent LOH (SCLs) on chromosome 8, we screened 52 PC patient/tumor samples with 39 polymorphic markers in successive screenings. In the course of refining the SCLs, we identified 3 tumors with >6 Mb homozygous deletions (HZDs) at 8p22 and 8p21, suggesting the presence of candidate TSGs at both loci. These HZDs spanned the two SCLs at 8p22 (46%) and 8p21 (45%). The SCLs were narrowed to 3.2 cM at 8p22 and less than 3 cM at 8p21. ^ In order to identify candidate TSGs within the SCLs on 8p, two approaches were used. In the candidate gene approach, thirty genes that mapped to the SCLs were evaluated for expression in normal prostate and in PC cell lines. One of the candidate genes, Clusterin, showed decreased expression in 4/7 (57%) prostate cancer cell lines by Northern blot analysis. Clusterin will be further examined as a candidate TSG. ^ The second approach involved utilizing subtractive hybridization and hybrid affinity capture to generate pools of expressed sequence tags (ESTs) enriched for genes that are downregulated or deleted in PC and that map to specific regions of interest. We took advantage of a prostate cancer cell line (PC3) with a known HZD of a candidate TSG, CTNNA1 on 5q31, to develop and validate a model system. We then developed subtracted libraries enriched for 8p22 and 8p21 ESTs by this method, using two cell lines, MDAPCa-2b and PC3. The ESTs were cloned, and 40 were sequenced and evaluated for expression in normal prostate and PC cell lines. Three ESTs from the subtracted libraries, C2, C17 and F12, showed decreased expression in 29–57% of the prostate tumor cell lines studied, and will be further examined as candidate TSGs. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The genetic etiology of stroke likely reflects the influence of multiple loci with small effects, each modulating different pathophysiological processes. This research project utilized three analytical strategies to address the paucity of information related to the identification and characterization of genetic variation associated with stroke in the general population. ^ First, the general contribution of familial factors to stroke susceptibility was evaluated in a population-based sample of unrelated individuals. Increased risk of subclinical cerebral infarction was observed among individuals with a positive parental history of stroke. This association did not appear to be mediated by established stroke risk factors, specifically blood pressure levels or hypertension status. ^ The need to identify specific gene variation associated with stroke in the general population was addressed by evaluating seven candidate gene polymorphisms in a population-based sample of unrelated individuals. Three polymorphisms were significantly associated with increased subclinical cerebral infarction or incident clinical ischemic stroke risk. These relationships include the G-protein β3 subunit 825C/T polymorphism and clinical stroke in Whites, the lipoprotein lipase S/X447 polymorphism and subclinical and clinical stroke in men, and the angiotensin I-converting enzyme Ins/Del polymorphism and subclinical stroke in White men. These associations did not appear to be obfuscated by the stroke risk factors adjusted for in the analysis models specifically blood pressure levels or anti-hypertensive medication use. ^ The final research strategy considered, on a genome-wide scale, the idea that genetic variation may contribute to the occurrence of hypertension or stroke through a common etiologic pathway. Genomic regions were identified for which significant evidence of heterogeneity was observed among hypertensive sibpairs stratified by family history of stroke information. Regions identified on chromosome 15 in African Americans, and chromosome 13 in Whites and African Americans, suggest the presence of genes influencing hypertension and stroke susceptibility. ^ Insight into the role of genetics in stroke is useful for the potential early identification of individuals at increased risk for stroke and improved understanding of the etiology of the disease. The ultimate goal of these endeavors is to guide the development of therapeutic intervention and informed prevention to provide a lasting and positive impact on public health. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Several genetic linkage and epidemiological studies have provided strong evidence that DCDC2 is a candidate gene for developmental dyslexia, a disorder that impairs a person’s reading ability despite adequate intelligence, education, and socio-economic status. Studies investigating embryonic intra-ventricular RNA interference (RNAi) of Dcdc2, a rat homolog of the DCDC2 gene in humans, indicate disruptions in neuronal migration in the rat cortex during development. Interestingly, these anatomical anomalies are consistent with post mortem histological analysis of human dyslexic patients. Other rodent models of cortical developmental disruption have shown impairment in rapid auditory processing and learning maze tasks in affected subjects. The current study investigates the rapid auditory processing abilities of mice heterozygous for Dcdc2 (one functioning Dcdc2 allele) and mice with a homozygous knockout of Dcdc2 (no functioning Dcdc2 allele). It is important to note that this genetic model for behavioral assessment is still in the pilot stage. However, preliminary results suggest that mice with a genetic mutation of Dcdc2 have impaired rapid auditory processing, as well as non-spatial maze learning and memory ability, as compared to wildtypes. By genetically knocking out Dcdc2 in mice, behavioral features associated with Dcdc2 can be characterized, along with other neurological abnormalities that may arise due to the loss of the functioning gene.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Synapsins are a family of neuron-specific synaptic vesicle-associated phosphoproteins that have been implicated in synaptogenesis and in the modulation of neurotransmitter release. In mammals, distinct genes for synapsins I and II have been identified, each of which gives rise to two alternatively spliced isoforms. We have now cloned and characterized a third member of the synapsin gene family, synapsin III, from human DNA. Synapsin III gives rise to at least one protein isoform, designated synapsin IIIa, in several mammalian species. Synapsin IIIa is associated with synaptic vesicles, and its expression appears to be neuron-specific. The primary structure of synapsin IIIa conforms to the domain model previously described for the synapsin family, with domains A, C, and E exhibiting the highest degree of conservation. Synapsin IIIa contains a novel domain, termed domain J, located between domains C and E. The similarities among synapsins I, II, and III in domain organization, neuron-specific expression, and subcellular localization suggest a possible role for synapsin III in the regulation of neurotransmitter release and synaptogenesis. The human synapsin III gene is located on chromosome 22q12–13, which has been identified as a possible schizophrenia susceptibility locus. On the basis of this localization and the well established neurobiological roles of the synapsins, synapsin III represents a candidate gene for schizophrenia.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Bs2 resistance gene of pepper specifically recognizes and confers resistance to strains of Xanthomonas campestris pv. vesicatoria that contain the corresponding bacterial avirulence gene, avrBs2. The involvement of avrBs2 in pathogen fitness and its prevalence in many X. campestris pathovars suggests that the Bs2 gene may be durable in the field and provide resistance when introduced into other plant species. Employing a positional cloning strategy, the Bs2 locus was isolated and the gene was identified by coexpression with avrBs2 in an Agrobacterium-mediated transient assay. A single candidate gene, predicted to encode motifs characteristic of the nucleotide binding site–leucine-rich repeat class of resistance genes, was identified. This gene specifically controlled the hypersensitive response when transiently expressed in susceptible pepper and tomato lines and in a nonhost species, Nicotiana benthamiana, and was designated as Bs2. Functional expression of Bs2 in stable transgenic tomatoes supports its use as a source of resistance in other Solanaceous plant species.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Formation of the mammalian secondary palate is a highly regulated and complex process whose impairment often results in cleft palate, a common birth defect in both humans and animals. Loss-of-function analysis has linked a growing number of genes to this process. Here we report that Lhx8, a recently identified LIM homeobox gene, is expressed in the mesenchyme of the mouse palatal structures throughout their development. To test the function of Lhx8 in vivo, we generated a mutant mouse with a targeted deletion of the Lhx8 gene. Our analysis of the mutant animals revealed a crucial role for Lhx8 in palatogenesis. In Lhx8 homozygous mutant embryos, the bilateral primordial palatal shelves formed and elevated normally, but they often failed to make contact and to fuse properly, resulting in a cleft secondary palate. Because development of other craniofacial structures appeared normal, the impaired palatal formation in Lhx8-mutant mice was most likely caused by an intrinsic primary defect in the mesenchyme of the palatal shelves. The cleft palate phenotype observed in Lhx8-mutant mice suggests that Lhx8 is a candidate gene for the isolated nonsyndromic form of cleft palate in humans.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We previously have described a mouse model for polycystic kidney disease (PKD) caused by either of two mutations, kat or kat2J, that map to the same locus on chromosome 8. The homozygous mutant animals have a latent onset, slowly progressing form of PKD with renal pathology similar to the human autosomal-dominant PKD. In addition, the mutant animals show pleiotropic effects that include facial dysmorphism, dwarfing, male sterility, anemia, and cystic choroid plexus. We previously fine-mapped the kat2J mutation to a genetic distance of 0.28 ± 0.12 centimorgan between D8Mit128 and D8Mit129. To identify the underlying molecular defect in this locus, we constructed an integrated genetic and physical map of the critical region surrounding the kat2J mutation. Cloning and expression analysis of the transcribed sequences from this region identified Nek1, a NIMA (never in mitosis A)-related kinase as a candidate gene. Further analysis of the Nek1 gene from both kat/kat and kat2J/kat2J mutant animals identified a partial internal deletion and a single-base insertion as the molecular basis for these mutations. The complex pleiotropic phenotypes seen in the homozygous mutant animals suggest that the NEK1 protein participates in different signaling pathways to regulate diverse cellular processes. Our findings identify a previously unsuspected role for Nek1 in the kidney and open a new avenue for studying cystogenesis and identifying possible modes of therapy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Activation of genes by heavy metals, notably zinc, cadmium and copper, depends on MTF-1, a unique zinc finger transcription factor conserved from insects to human. Knockout of MTF-1 in the mouse results in embryonic lethality due to liver decay, while knockout of its best characterized target genes, the stress-inducible metallothionein genes I and II, is viable, suggesting additional target genes of MTF-1. Here we report on a multi-pronged search for potential target genes of MTF-1, including microarray screening, SABRE selective amplification, a computer search for MREs (DNA-binding sites of MTF-1) and transfection of reporter genes driven by candidate gene promoters. Some new candidate target genes emerged, including those encoding α-fetoprotein, the liver-enriched transcription factor C/EBPα and tear lipocalin/von Ebner’s gland protein, all of which have a role in toxicity/the cell stress response. In contrast, expression of other cell stress-associated genes, such as those for superoxide dismutases, thioredoxin and heat shock proteins, do not appear to be affected by loss of MTF-1. Our experiments have also exposed some problems with target gene searches. First, finding the optimal time window for detecting MTF-1 target genes in a lethal phenotype of rapid liver decay proved problematical: 12.5-day-old mouse embryos (stage E12.5) yielded hardly any differentially expressed genes, whereas at stage 13.0 reduced expression of secretory liver proteins probably reflected the onset of liver decay, i.e. a secondary effect. Likewise, up-regulation of some proliferation-associated genes may also just reflect responses to the concomitant loss of hepatocytes. Another sobering finding concerns γ-glutamylcysteine synthetasehc (γ-GCShc), which controls synthesis of the antioxidant glutathione and which was previously suggested to be a target gene contributing to the lethal phenotype in MTF-1 knockout mice. γ-GCShc mRNA is reduced at the onset of liver decay but MTF-1 null mutant embryos manage to maintain a very high glutathione level until shortly before that stage, perhaps in an attempt to compensate for low expression of metallothioneins, which also have a role as antioxidants.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The translocation t(10;11)(p13;q14) is a recurring chromosomal abnormality that has been observed in patients with acute lymphoblastic leukemia as well as acute myeloid leukemia. We have recently reported that the monocytic cell line U937 has a t(10;11)(p13;q14) translocation. Using a combination of positional cloning and candidate gene approach, we cloned the breakpoint and were able to show that AF10 is fused to a novel gene that we named CALM (Clathrin Assembly Lymphoid Myeloid leukemia gene) located at 11q14. AF10, a putative transcription factor, had recently been cloned as one of the fusion partners of MLL. CALM has a very high homology in its N-terminal third to the murine ap-3 gene which is one of the clathrin assembly proteins. The N-terminal region of ap-3 has been shown to bind to clathrin and to have a high-affinity binding site for phosphoinositols. The identification of the CALM/AF10 fusion gene in the widely used U937 cell line will contribute to our understanding of the malignant phenotype of this line.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We report the isolation of 10 differentially expressed cDNAs in the process of apoptosis induced by the p53 tamor suppressor. As a global analytical method, we performed a differential display of mRNA between mouse M1 myeloid leukemia cells and derived clone LTR6 cells, which contain a stably transfected temperature-sensitive mutant of p53. At 32 degrees C wild-type p53 function is activated in LTR6 cells, resulting in programmed cell death. Eight genes are activated (TSAP; tumor suppressor activated pathway), and two are inhibited (TSIP, tumor suppressor inhibited pathway) in their expression. None of the 10 sequences has hitherto been recognized as part of the p53 signaling pathway. Three TSAPs are homologous to known genes. TSAP1 corresponds to phospholipase C beta 4. TSAP2 has a conserved domain homologous to a multiple endocrine neoplasia I (ZFM1) candidate gene. TSAP3 is the mouse homologue of the Drosophila seven in absentia gene. These data provide novel molecules involved in the pathway of wild-type p53 activation. They establish a functional link between a homologue of a conserved developmental Drosophila gene and signal transduction in tumor suppression leading to programmed cell death.