288 resultados para callus
Resumo:
The interaction of MP-11 as a model of antioxidatase enzymes with La3+ was investigated. It was found that La3+ can increase in the non-planarity of heme and the content of alpha helix and beta turn conformations of the MP11 molecule. The change in the secondary structure of the MP-11 molecule can increase in the exposure extent of heme to the solution. Therefore, the electrochemical reaction of MP-11 is promoted and the electrocatalytic activity to the reduction of H2O2 is increased. The results are consistent with that for the interaction of peroxidases(POD), one of the antioxidatase enzymes, obtained in the living plant experiments at low concentration of La3+.
Resumo:
The responses of stem segments of watercress (Nasturtium officinale R. Br.) to 6-BA,NAA and 2,4-D were studied. MS medium supplemented with 2.0 mg/L 6-BA, 0.2 mg/L 2,4-D was used for callus initiation and maintenance. MS medium supplemented with 4.0 mg/L 6-BA was suitable for plant regeneration and MS medium without plant hormone supplement was used for rooting and plant propagation. For screening of salt tolerant calli, stem segments of watercress were plated onto callus initiation medium containing 1/3 natural seawater. Seventeen out of the 325 plated explants produced calli. The growth curves demonstrated that the growth rate of salt-tolerant calli on saline medium almost matched that of the control calli on normal medium. Some of the salt-tolerant calli were transferred to the normal regeneration medium or saline regeneration medium to induce plant regeneration. In the first case, buds and shoots were regenerated in the same way as those of control calli on normal regeneration medium. More than 1 000 regenerated shoots were obtained of which 83 regenerated shoots were cut and transferred to saline MS base medium. At first, all shoot growth was inhibited, but 40 days after the transfer, rapid-growing axillary shoots were observed on 16 of the original shoots but none on the control shoots on saline MS base medium. Moreover, green spots appeared on most calli 10 days after they were transferred to saline medium, however buds appeared only on 5 calli from the 30 transferred calli and at the end only 2 rapid-growing shoots were obtained from two calli. In total, 18 variant lines were obtained through. propagation of the salt-tolerant shoots on saline MS base medium. RAPD analysis was performed in 10 of the 18 salt-tolerant variant lines and DNA variation was detected in all the tested variant lines.
Resumo:
The inherent instability of metabolite production in plant cell culture-based bioprocessing is a major problem hindering its commercialization. To understand the extent and causes of this instability, this study was aimed at understanding the variability of anthocyanin accumulation during long-term subcultures, as well as within subculture batches, in Vitis vinifera cell cultures. Therefore, four cell line suspensions of Vitis vinitera L. var. Gamay Freaux, A, B, C and D, originated from the same callus by cell-aggregate cloning, were established with starting anthocyanin contents of 2.73 +/- 0.15, 1.45 +/- 0.04, 0.77 +/- 0.024 and 0.27 +/- 0.04 CV (Color Value)/g-FCW (fresh cell weight), respectively. During weekly subculturing of 33 batches over 8 months, the anthocyanin biosynthetic capacity was gradually lost at various rates, for all four cell lines, regardless of the significant difference in the starting anthocyanin content. Contrary to this general trend, a significant fluctuation in the anthocyanin content was observed, but with an irregular cyclic pattern. The variabilities in the anthocyanin content between the subcultures for the 33 batches, as represented by the variation coefficient (VC), were 58, 57, 54, and 84% for V vinifera cell lines A, B, C and D, respectively. Within one subculture, the VCs from 12 replicate flasks for each of 12 independent subcultures were averaged, and found to be 9.7%, ranging from 4 to 17%. High- and low-producing cell lines, VV05 and VV06, with 1.8-fold differences in their basal anthocyanin contents, exhibited different inducibilities to L-phenylalanine feeding, methyl jasmonate and light irradiation. The low-producing cell line, showed greater potential in enhanced the anthocyanin production.
Resumo:
John Draper, Luis A.J. Mur, Glyn Jenkins, Gadab C. Ghosh-Biswas, Pauline Bablak, Robert Hasterok,and Andrew P.M. Routledge (2001). Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Physiology, 127 (4), 1539-1555. Sponsorship: BBSRC / Gatsby Foundation RAE2008
Resumo:
The development of procedures and media for the micropropagation of B. rex are described. Media for the production of plantlets from a number of other Begonia hybrids are also provided. Growth analysis data is given for plants produced in vivo from leaf cuttings and in vitro from mature leaf petioles and immature leaves derived from singly and multiply recycled axenic plantlets. No significant difference was found in phenotype or quantitative vegetative characters for any of the populations assessed. The results presented from studies on the development of broad spectrum media for the propagation of a number of B. rex cultivars using axenic leaf explants on factorial combinations of hormones illustrate the major influence played by the genotype on explant response in vitro and suggest media on which a range of B. rex cultivars may be propagated. Procedures for in vitro irradiation and colchicine treatments to destabilize the B. rex genome have also been described. Variants produced from these treatments indicate the utility of in vitro procedures for the expression of induced somatic variation. Colour variants produced from irradiation treatment have been cultured and prove stable. Polyploids produced as variants from irradiation treatment have been subcultured but prove unstable. Media for the induction and proliferation of callus are outlined. The influence of callus subculture and aging on the stability of the B. rex genome is assessed by chromosomal analysis of cells, in vitro and in regenerants. The B. rex genome is destabilized in callus culture but attenuation of variation occurs on regeneration. Diploid cell lines are maintained in callus subcultures and supplementation of regenerative media with high cytokinin concentrations, casein hydrolysate or adenine failed to produce variants. Callus aging however resulted in the production of polyploids. The presence and expression of pre-existing somatic variation in B. rex pith and root tissue is assessed and polyploids have been produced from pith tissues cultured in vitro. The stability of the B. rex genome and the application of tissue culture to micropropagation and breeding of B. rex are discussed.
Resumo:
We hypothesise that following a bone fracture there is systemic recruitment of bone forming cells to a fracture site. A rabbit ulnar osteotomy model was adapted to trace the movement of osteogenic cells. Bone marrow mesenchymal stem cells from 41 NZW rabbits were isolated, culture-expanded and fluorescently labelled. The labelled cells were either re-implanted into the fracture gap (Group A); into a vein (Group B); or into a remote tibial bone marrow cavity 48 h after the osteotomy (Group C) or 4 weeks before the osteotomy was established (Group D), and a control group (Group E) had no labelled cells given. To quantify passive leakage of cells to an injury site, inert beads were also co-delivered in Group B. Samples of the fracture callus tissue and various organs were harvested at discrete sacrifice time-points to trace and quantify the labelled cells. At 3 weeks following osteotomy, the number of labelled cells identified in the callus of Group C, was significantly greater than following IV delivery, Group B, and there was no difference in the number of labelled cells in the callus tissues, between Groups C and A, indicating the labelled bone marrow cells were capable of migrating to the fracture sites from the remote bone marrow cavity. Significantly fewer inert beads than labelled cells were identified in Group B callus, suggesting some of the bone-forming cells were actively recruited and selectively chosen to the fracture site, rather than passively leaked into the circulation and to bone injury site. This investigation supports the hypothesis that some osteoblasts involved in fracture healing were systemically mobilised and recruited to the fracture from remote bone marrow sites. © 2005 Orthopaedic Research Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
We aimed to develop a clinically relevant delayed union/non-union fracture model to evaluate a cell therapy intervention repair strategy. Histology, three-dimensional (3D) micro-computed tomography (micro-CT) imaging and mechanical testing were utilized to develop an analytical protocol for qualitative and quantitative assessment of fracture repair. An open femoral diaphyseal osteotomy, combined with periosteal diathermy and endosteal excision, was held in compression by a four pin unilateral external fixator. Three delayed union/non-union fracture groups established at 6 weeks-(a) a control group, (b) a cell therapy group, and (c) a group receiving phosphate-buffered saline (PBS) injection alone-were examined subsequently at 8 and 14 weeks. The histological response was combined fibrous and cartilaginous non-unions in groups A and B with fibrous non-unions in group C. Mineralized callus volume/total volume percentage showed no statistically significant differences between groups. Endosteal calcified tissue volume/endosteal tissue volume, at the center of the fracture site, displayed statistically significant differences between 8 and 14 weeks for cell and PBS intervention groups but not for the control group. The percentage load to failure was significantly lower in the control and cell treatment groups than in the PBS alone group. High-resolution micro-CT imaging provides a powerful tool to augment characterization of repair in delayed union/non-union fractures together with outcomes such as histology and mechanical strength measurement. Accurate, nondestructive, 3D identification of mineralization progression in repairing fractures is enabled in the presence or absence of intervention strategies. (c) 2007 Orthopaedic Research Society.
Resumo:
Plants were regenerated from callus induced from leaf disc explants of a tomato F, hybrid heterozygous for three marker loci (a), without anthocyanin (aw), and hairless (hl). Regenerants were studied for somaclonal variation at the phenotypic level by scoring for variation in the marker loci, and at the DNA level by probing geomic DNA blots with a chlorophyll a/b binding protein (Cab-3C) cDNA sequence. While no variation was observed at the phenotypic level in over 950 somaclones studied, DNA polymorphism for the Cab locus could be detected in two out of 17 somaclones tested. Tissue culture induced variation at the phenotypic level for specific loci is very low (less than 0.001 for a, awor hl) but DNA sequence changes are induced at much greater frequency (- 0.1 for a multicopy gene family such as Cab).
Resumo:
Somatic embryos were induced from scutellar callus of immature zygotic embryos of T aestivum cv. Chinese Spring. Observations on precociously germinating somatic embryos revealed that: (i) In the initial stages the coleoptile is split, exposes the shoot apex and forms a green trichomatous leafy structure. In the germinating zygotic embryo, the coleoptile is tubular, (ii) Unlike what has been inferred earlier the leafy structure is the coleoptile and not the scutellum, (iii) Bipolarity of the embryoid is established later when root develops at the basal end.
Resumo:
Given the economic importance of Jatropha curcas, and its limited availability in the wild, it would be desirable to establish plantations ofthe tree so as to obtain assured supply of raw material for extraction of phytochemicals, and seeds for production of biodiesel. However both seed propagation as well as propagation by cuttings is unsatisfactory in this tree species. Seeds have poor viability and are genetically heterozygous leading to genetic variability in terms of growth, biomass, seed yield, and oil content. Stern cuttings have poor roots and the trees are easily uprooted. Tissue culture techniques could possibly be gainfully employed in the propagation of elite plants ofJaIropha. When plant tissue is passaged through in vitro culture, there is possibility of induction of variations. An estimation of somaclonal variability is useful in a determination of culture protocols. Molecular markers could be employed to estimate the amount of variations induced in callus and regenerants by different honnonal combinations used in culture. In this context the present study aims to develop an in vitro propagation protocol for the production of plantlets and to evaluate the variation induced in callus and regenerants in comparison with mother plant by the use of molecular markers and by studying phytochemicals and bio active compounds present in callus and regenerated plants
Resumo:
In the light of the very huge demand for natural ephedrine and pseudoephidrine, a search for an angiosperm plant containing the alkaloid ephedrine was made and could locate Sida spp. of malvaceae family. Sida is a large genus of, herbs and shrubs distributed throughout the tropics. About a dozen species occur in India. The medicinally important species known are S.rhombrfolia S.cordata and S.spinosa (Anon, 1972). Among the various species, S.rh0mbIfolia is the most widely used one in the traditional system of medicine. An attempt was made in the present study to develop an ideal bioprocess for the in vitro production of ephedrine from the cell culture system of Sida rhombrfolia Linn. ssp. retusa. The callus and suspension culture were initiated and attempts were made to enhance the yield positively by employing various strategies like mutagenesis, immobilization and addition of precursors, elicitors and penneabilizing agents.