883 resultados para calcium ions


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nowadays, the search for new technologies that are able to follow the upcoming challenges in oil industry is a constant. Always trying properties improvements of the used materials, looking for the best performance and greater life time. Besides the search for technologies that show an improvement of performance, the search for materials environmentally correct along the whole production process. In Oil well cementing, this search for new technologies passes through the development of slurry systems that support these requests and that are also environmentally friendly. In this context, the use of geopolymer slurries is a great alternative route to cementing oil wells. Besides having good properties, comparable to Portland cement slurries, this alternative material releases much less CO2 gas in the production of their root materials when compared the production of Portland cement, which releases tons of CO2. In order to improve the properties of geopolymer slurries has been added Calcium Oxide, as observed in other studies that slurries where the Calcium is present the values of compressive strength is greater. The addition has been realized based in the CaO/SiO2 molar ratio of 0.05, 0.10 and 0.15. Have been performed compressive strength tests, thickening time, rheology and fliud loss control test of the slurries, following NBR 9831, as well as the physical chemical characterization of XRD, SEM and TG. Has been observed in most of the tests the slurries follow a tendency until the ratio of 0.10, which inverses in the ratio 0.15. This behavior can be explained by two phenomena that occur simultaneously, the first one is the break of the polymer chains and a consequent increase in molucules mobility, which prevails until the ratio of 0.1, and the second is possible approach of the chains due to the capacity of the calcium ions stabilize the charges of two different aluminum. There is only one linearity in the mechanical behavior that can be attributed to the appereance of the C-S-H phase. Based on this, it is concluded that the phenomenon of breaking the polymer chains predominates until the ratio of 0.1, causing an increase of the filtrate volume, lower rheological parameters and increasing thickening time. From the ratio of 0.15 the approach of the chains predominates, and the behavior is reversed

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Faculdade de Agronomia e Medicina Veterinária, Programa de Pós-Graduação em Saúde Animal, 2016.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Se describe la variante homocigota c.320-2A>G de TGM1 en dos hermanas con ictiosis congénita autosómica recesiva. El clonaje de los transcritos generados por esta variante permitió identificar tres mecanismos moleculares de splicing alternativos.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tartrate precipitation is still a relevant subject in Enology, being one of the most common problems of wine physical-chemical instability. Potassium bitartrate and calcium tartrate precipitations are undesirable phenomena which can occur in bottled wines, especially when these are stored at low temperatures. The occurrence of tartrate salt crystals (potassium hydrogen tartrate – KHT and calcium tartrate – CaT) in bottles has severe consequences in the final aspect of the wine and therefore on the consumer’s acceptance, making tartrate wine stabilization virtually mandatory before bottling. Currently, several solutions to prevent this haze are available: subtractive methods including the conventional cold treatments that promote the cristalization of KHT, removal of potassium and calcium ions either by electrodialysis or ion exchange resins; and additive methods such as the addition of carboxymethylcellulose, mannoproteins or metatartaric acid. For monitoring the KHT stability, several analytical methods have been developed based on conductivity evaluation, namely the mini-contact test and the saturation temperature measurements (TS). These methods will also be revisited, aiming to raise awareness of their utility as tools in quality control of wines. This review addresses tartrate precipitation subject and the most recent preventive solutions available, pointing out the advantages and drawbacks of each one, and its impact on the final characteristics of the wine.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Alkaline phosphatase from rat osseous plate is allosterically modulated by ATP, calcium and magnesium at pH 7.5. At pH 9.4, the hydrolysis of ATP and PNPP follows Michaelis-Menten kinetics with K0.5 values of 154 muM and 42 muM, respectively. However, at pH 7.5 both substrates exhibit more complex saturation curves, while only ATP exhibited site-site interactions. Ca2+-ATP and Mg2+-ATP were effective substrates for the enzyme, while the specific activity of the enzyme for the hydrolysis of ATP at pH 7.5 was 800-900 U/mg and was independent of the ion species. ATP, but not PNPP, was hydrolyzed slowly in the absence of metal ions with a specific activity of 140 U/mg. These data demonstrate that in vitro and at pH 7.5 rat osseous plate alkaline phosphatase is an active calcium or magnesium-activated ATPase.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The binding of the cations thallium(I), calcium(II) and terbium(III) to methyl methacrylate-methacrylic acid copolymers with different fractions of acid groups (x) has been studied in aqueous solution at, various pH values using the fluorescence of covalently bonded 9-vinyl anthracene as a probe. In all cases, the extent of binding increases as a function of the charge of the polymer with either increasing fraction of carboxylic acids or of pH. However, differences are observed in the behavior of the three cations, With Tl(I), quenching of the anthracene group fluorescence is observed. indicating that the thallium(I) approaches the probe and suggesting that the alkylanthracene is probably in a relatively polar region. Binding constants have been determined from anthracene quenching data and from studies with the fluorescent-probe sodium pyrenetetrasulfonate, Good agreement is obtained between the two methods, and values for the binding constants increase from 250 to 950 M-1 as x increases from 0.39 to 1. It is suggested that the cation is held in the polyelectrolyte domain, partly by Debye-Huckel effects and partly by more specific interactions. Stronger binding is found with calcium(II) and terbium(III), and in this case increases in fluorescence intensity are observed on complexation due to the anthracene group being in a more hydrophobic region, probably as a result of conformational changes in the polymer chain. In the former case the stoichiometry of the interaction was determined from the fluorescence data to involve two carboxylate groups bound per calcium. Association constants were found using murexide as an indicator of free calcium to vary from 8400 to 37 000 M-1 as x increases from 0.39 to 1. It is suggested that in this case specific calcium(II)-carboxylate interactions contribute to the binding. With terbium(III), a greater increase in the probe fluorescence intensity was observed than with calcium, and it is suggested that the interaction with the polymer is even stronger, leading to a more pronounced conformational change in the polymer. It is proposed that the terbium(III) interacts with sis carboxylic groups on the polymer chain, with three being coordinated and three attracted by electrostatic interactions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: To evaluate the effects of coronal leakage on concentration of hydrogen ions (pH) and calcium release of several calcium hydroxide pastes, over different periods of time. Material and Methods: Fifty extracted human mandibular central incisors (n=10) were instrumented up to the F2 instrument and assigned to the following intracanal dressing: G1- Calen, G2- Calen with 0.4% chlorhexidine (CHX), G3- Calcium hydroxide with camphorated paramonochlorophenol (CPMC) and glycerin, G4- Calen, but temporary filling material maintained during all test (positive control) and G5- Root canal without intracanal dressing (negative control). All groups were immersed in distilled water for 7 days. In sequence, the temporary filling materials were removed, except in controls groups. All specimens were individually mounted on a specific device and only its root again immersed in distilled water. Concentration of hydrogen ions and calcium release by calcium hydroxide pastes in distilled water were evaluated in 24h, 7, 14 and 28 days. The results were submitted to ANOVA test (p = 0.05). After 28 days, root canals from experimental groups were examined in SEM. Results: G1, G2, G3 and G4 presented similar pH values and calcium release and did not differ from each other (p>0.05), up to 7 days. After this time G1, G2 and G3 presented values lower values than G4 (p<0.05). In SEM analysis, calcium hydroxide residues were observed in all experimental groups. Conclusions: After 7 days, coronal leakage decreased the concentration of hydrogen ions and calcium ion release provided by all calcium hydroxide pastes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Synthetic calcium phosphates, despite their bioactivity, are brittle. Calcium phosphate-mullite composites have been suggested as potential dental and bone replacement materials which exhibit increased toughness. Aluminium, present in mullite, has however been linked to bone demineralisation and neurotoxicity: it is therefore important to characterise the materials fully in order to understand their in vivo behaviour. The present work reports the compositional mapping of the interfacial region of a calcium phosphate-20 wt% mullite biocomposite/soft tissue interface, obtained from the samples implanted into the long bones of healthy rabbits according to standard protocols (ISO-10993) for up to 12 weeks. X-ray micro-fluorescence was used to map simultaneously the distribution of Al, P, Si and Ca across the ceramic-soft tissue interface. A well defined and sharp interface region was present between the ceramic and the surrounding soft tissue for each time period examined. The concentration of Al in the surrounding tissue was found to fall by two orders of magnitude, to the background level, within similar to 35 mu m of the implanted ceramic.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Biomimetic hydroxyapatite was synthesized by the controlled release of calcium and phosphate ions from poly(N-isopropylacrylamide-co-acrylic acid) (poly(NIPAAm-co-AA)) nanogels. Mixing nanogels containing calcium chloride (CaCl2 ·2H2O) and nanogels containing sodium hydrogen phosphate (Na2HPO4·2H2O) in simulated body fluid (SBF) at physiological conditions of 37 °C and pH 7.4, biomimetic hydroxyapatite was obtained. By studying separately the loading and controlled release of the salts from the nanogels, adequate conditions were chosen to synthesize the hydroxyapatite: Calcium loaded (Ca-loaded) nanogels (1000 mg/ml; 400:3) and inorganic phosphate loaded (Pi-loaded) nanogels (90 mg/ml; 12:1) in a ratio of 2:1 were placed in SBF solution. The obtained powders characterization showed that a low crystalline and substituted hydroxyapatite similar to bone apatite was formed. Such a strategy could be used in medical and dental procedures to induce rapid inorganic mineral formation from a nanogel-containing biomaterial. © 2012 American Scientific Publishers. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The presence of calcium, iron, and zinc bound to human milk secretory IgA (sIgA) was investigated. The sIgA components were first separated by two-dimensional polyacrylamide gel electrophoresis and then identified by electrospray ionization-tandem mass spectrometry (ESI MS MS). The metal ions were detected by flame atomic absorption spectrometry after acid mineralization of the spots. The results showed eight protein spots corresponding to the IgA heavy chain constant region. Another spot was identified as the transmembrane secretory component. Calcium was bound to both the transmembrane component and the heavy chain constant region, while zinc was bound to the heavy chain constant region and iron was not bound with the identified proteins. The association of a metal ion with a protein is important for a number of reasons, and therefore, the findings of the present study may lead to a better understanding of the mechanisms of action and of additional roles that sIgA and its components play in human milk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we present a comprehensive study of the spectroscopic and thermo-optical properties of a set of samples with composition xNd(2)O(3)-(5-x)Y(2)O(3-)40CaO-55B(2)O(3) (0 <= x <= 1.0 mol%). Their fluorescence quantum efficiency (eta) values were determined using the thermal lens technique and the dependence on the ionic concentration was analyzed in terms of energy transfer processes, based on the Forster-Dexter model of multipolar ion-ion interactions. A maximum eta = 0.54 was found to be substantially higher than for yttrium aluminoborate crystals and glasses with comparable Nd(3+) content. As for the thermo-optical properties of yttrium calcium borate, they are comparable to other well-known laser glasses. The obtained energy transfer microparameters and the weak dependence of. on the Nd(3+) concentration with a high optimum Nd(3+) concentration put this system as a strong candidate for photonics applications. (C) 2011 American Institute of Physics. [doi:10.1063/1.3567091]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the properties of calcium-activated chloride channels in inside-out membrane patches from the dendritic knobs of acutely dissociated rat olfactory receptor neurons. Patches typically contained large calcium-activated currents, with total conductances in the range 30-75 nS. The dose response curve for calcium exhibited an EC50 of about 26 mu M. In symmetrical NaCl solutions, the current-voltage relationship reversed at 0 mV and was linear between -80 and +70 mV. When the intracellular NaCl concentration was progressively reduced from 150 to 25 mM, the reversal potential changed in a manner consistent with a chloride-selective conductance. Indeed, modeling these data with the Goldman-Hodgkin-Katz equation revealed a P-Na/P-Cl of 0.034. The halide permeability sequence was P-Cl > P-F > P-I > P-Br indicating that permeation through the channel was dominated by ion binding sites with a high field strength. The channels were also permeable to the large organic anions, SCN-, acetate(-), and gluconate(-), with the permeability sequence P-Cl > P-SCN > gluconaie. Significant permeation to gluconate ions suggested that the channel pore had a minimum diameter of at least 5.8 Angstrom.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The properties of single Ca2+-activated K+ (BK) channels in neonatal rat intracardiac neurons were investigated using the patch-clamp recording technique. In symmetrical 140 mM K+, the single-channel slope conductance was linear in the voltage range -60/+60 mV. and was 207+/-19 pS. Na+ ions were not measurably permeant through the open channel. Channel activity increased with the cytoplasmic free Ca2+ concentration ([Ca2+],) with a Hill plot giving a half-saturating [Ca2+] (K-0.5) of 1.35 muM and slope of congruent to3. The BK channel was inhibited reversibly by external tetraethylammonium (TEA) ions, charybdotoxin, and quinine and was resistant to block by 4-aminopyridine and apamin. Ionomycin (1-10 muM) increased BK channel activity in the cell-attached recording configuration. The resting activity was consistent with a [Ca2+](i)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The weak fixation of biomaterials within the bone structure is one of the major reasons of implants failures. Calcium phosphate (CaP) coatings are used in bone tissue engineering to improve implant osseointegration by enhancing cellular adhesion, proliferation and differentiation, leading to a tight and stable junction between implant and host bone. It has also been observed that materials compatible with bone tissue either have a CaP coating or develop such a calcified surface upon implantation. Thus, the development of bioactive coatings becomes essential for further improvement of integration with the surrounding tissue. However, most of current applied CaP coatings methods (e.g. physical vapor deposition), cannot be applied to complex shapes and porous implants, provide poor structural control over the coating and prevent incorporation of bioactive organic compounds (e.g. antibiotics, growth factors) because of the used harsh processing conditions. Layer-by-layer (LbL) is a versatile technology that permits the building-up of multilayered polyelectrolyte films in mild conditions based on the alternate adsorption of cationic and anionic elements that can integrate bioactive compounds. As it is recognized in natureâ s biomineralization process the presence of an organic template to induce mineral deposition, this work investigate a ion based biomimetic method where all the process is based on LbL methodology made of weak natural-origin polyelectrolytes. A nanostructured multilayer component, with 5 or 10 bilayers, was produced initially using chitosan and chondroitin sulphate polyelectrolyte biopolymers, which possess similarities with the extracellular matrix and good biocompatibility. The multilayers are then rinsed with a sequential passing of solutions containing Ca2+ and PO43- ions. The formation of CaP over the polyelectrolyte multilayers was confirmed by QCM-D, SEM and EDX. The outcomes show that 10 polyelectrolyte bilayer condition behaved as a  better site for initiating the formation of CaP as the precipitation occur at earlier stages than in 5 polyelectrolyte bilayers one. This denotes that higher number of bilayers could hold the CaP crystals more efficiently. This work achieved uniform coatings that can be applied to any surface with access to the liquid media in a low-temperature method, which potentiates the manufacture of effective bioactive biomaterials with great potential in orthopedic applications.