994 resultados para calcium chloride


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Química - IQ

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Zymomonas mobilis was immobilized using a cell suspension fixed to 8.6 x 10(7) CFU mL(-1) by spectrophotometry. This biomass was suspended in sodium alginate solution (3%) that was dropped with a hypodermic syringe into 0.2 M calcium chloride solution. Was test two initial pH of fermentation medium (4 and 5) and different sucrose concentrations 15, 20, 25, 30 and 35% at 30 degrees C, without stirring for 24, 48, 72 and 96 hours. The levan production to pH 4 was high in sucrose 25% for 24 (16.51 g L-1) and 48 (15.31 g L-1) hours. The best values obtained to pH 5 was in sucrose 35% during 48 (22.39 g L-1) and 96 (23.5 g L-1) hours, respectively. The maximum levan yield was 40.8% and 22.47% in sucrose 15% to pH 4 and 5, respectively. Substrate consumption to pH 4 was bigger in sucrose 15 (56.4%) and 20% (59.4%) and to pH 5 was in 25 (68.85%) and 35% (64.64%). In relation to immobilization efficiency, Zymomonas mobilis showed high adhesion and colonization in support, indicated by cell growth increased from 107 to 10(9) CFU mL(-1) during fermentation time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bacterial cellulose (BC) has become established as a remarkably versatile biomaterial and can be used in a wide variety of scientific applications, especially for medical devices. In this work, the bacterial cellulose fermentation process is modified by the addition of chondroitin sulfate and hyaluronic acid (1% w/w) to the culture medium before the bacteria is inoculated. Besides, biomimetic precipitation of calcium phosphate of biological interest from simulated body fluid on bacterial cellulose was studied. Chondroitin sulfate and hyaluronic acid effects in bacterial cellulose were analyzed using transmission infrared spectroscopy (FTIR), XRD (X-ray diffraction) and scanning electron microscopy (SEM). FTIR analysis showed interaction between bacterial cellulose nanobiocomposites and calcium phosphate. XRD demonstrated amorphous calcium phosphate, carbonated apatite and calcium chloride on bacterial cellulose nanobiocomposites. Monocalcium phosphate monohydrate phase formation [Ca(H2PO4)(2)center dot H2O] are here attested by FTIR, XRD and Ca/P relation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Apocynin has been used as an efficient inhibitor of the multi-enzymatic complex NADPH oxidase in many experimental models involving phagocytic and nonphagocytic cells. The mechanism of inhibition has been linked with the previous activation of apocynin through the action of cellular peroxidases leading to the formation of a dimeric oxidation product, diapocynin. In this study we compared apocynin with pure diapocynin regarding their effects as scavenger of hydrogen peroxide and hypochlorous generated by glucose/glucose oxidase and myeloperoxidase respectively, and as inhibitors of the production of hydrogen peroxide and hypochlorous acid by activated neutrophils. The production of hydrogen peroxide was measured by the oxidation of the fluorescent substance Amplex Red and the production of hypochlorous acid by was measured as taurine-chloramine derivative using the chromogenic substrate 3,3’,5,5’- tetramethylbenzidine (TMB). Neutrophils (1 x106 cells/mL) were pre-incubated in PBS buffer supplemented with 1 mM calcium chloride, 0.5 mM magnesium chloride, 1 mg/mL glucose and 5 mM taurine in the presence or absence of inhibitors. The reactions were triggered by adding the soluble stimulus Forbol Miristate Acetate PMA or zymosan and incubated by additional 30 minutes. We found that pure diapocynin was not better than apocynin regarding its scavenger and inhibitory properties. These results suggest that the formation of diapocynin is not essential for the action of apocynin as inhibitor of NADPH oxidase activation

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Produção Vegetal) - FCAV

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Craniofacial trauma can lead to several complications. The combined fractures of anterior and posterior walls of the frontal bone are almost always followed by lesions in nasofrontal orifices and disruption of nasofrontal ostia or ducts, a significant factor for the development of early and late complications after sinus fractures. This article reports a case of trauma patient, who underwent neurological evaluation and at first showed good general condition. Computed tomography noted fracture of the anterior and posterior walls of the frontal sinus and small foci of pneumocephalus in the cerebral cortex. The patient was monitored periodically and 9 days after trauma showed increased areas of pneumocephalus in prefrontal cortex, cerebrospinal fluid draining, and large dura mater lesion, with signs of necrosis and inflammation (meningitis). The necrotic tissues were removed, and dura mater was repaired through the approximation with resorbable wire polyglactin 910 5-0, oxidized cellulose application, and bonding with human fibrin sealant (fibrinogen, thrombin, and calcium chloride). Sinusectomy, frontal sinus, and nasofrontal duct obliteration with pedicled pericranium flap were performed. Tomographically, a reanatomization was noted in frontal region, and a 12-month follow-up showed no complication. The use of fibrin glue to repair dura mater lacerations, as well as the pedicle pericranium flap for frontal sinus and nasofrontal duct obliteration, is an efficient method for treating fractures of the frontal bone.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this trial was to evaluate the effect of ascorbic acid (AA) and calcium chloride (CaCl2) applied by immersion at temperatures of 20 and 40 degrees C on the physicochemical and sensory characteristics of minimally processed cabbage, stored under refrigeration. Cabbages were processed in an industrial food processing equipment to be cut in slices with thickness of 3 mm. Slices were immersed in sodium hypochlorite (50 ppm) during 5 minutes for sanitization. After, the following treatments were carried out T1= control (immersion in water during 5 minutes at 20 degrees C); T2= immersion in 1% AA solution, during 5 minutes at 20 degrees C; T3= immersion in 2% AA solution, during 5 minutes at 20 degrees C; T4= immersion in 1% CaCl2 solution during 5 minutes at 20 degrees C; T5= immersion in 2% CaCl2 solution during 5 minutes at 20 degrees C, T6= immersion in 1% CaCl2 solution during 5 minutes at 40 degrees C; and T7= immersion in 2% CaCl2 solution during 5 minutes at 40 degrees C; with four replications each one. After application of treatments, cabbage was centrifuged during one minute, wrapped with polyvinyl chloride, 20 mu m, in trays of expanded polystyrene and maintained in refrigerated environment, at 6 +/- 1 degrees C and 85-90% of relative humidity, during eight days. Little increasing was observed in pH and titratable acidity values and reduction in soluble solids during conservation period on all treatments. Treatment with AA did not differ from control for color and general appearance, while treatment with 2% CaCl2 at 20 degrees C maintained the best quality, with less intensity of browning, best general appearance and purchase intent and least strange odor at the end of evaluation period.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bacterial cellulose (BC) has become established as a remarkably versatile biomaterial and can be used in a wide variety of scientific applications, especially for medical devices. In this work, the bacterial cellulose fermentation process is modified by the addition of chondroitin sulfate and hyaluronic acid (1% w/w) to the culture medium before the bacteria is inoculated. Besides, biomimetic precipitation of calcium phosphate of biological interest from simulated body fluid on bacterial cellulose was studied. Chondroitin sulfate and hyaluronic acid influences in bacterial cellulose were analyzed using transmission infrared spectroscopy (FTIR), XRD (X-ray diffraction) and scanning electron microscopy (SEM). FTIR analysis showed interaction between bacterial cellulose nanobiocomposites and calcium phosphate and XRD demonstrated amorphous calcium phosphate and calcium chloride on bacterial cellulose nanobiocomposites. SEM images confirmed incorporation of calcium phosphate in bacterial cellulose nanobiocomposites surface with different calcium phosphate particles morphology.