968 resultados para buffer layers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although mobile phones are often used in public urban places to interact with one’s geographically dispersed social circle, they can also facilitate interactions with people in the same public urban space. The PlaceTagz study investigates how physical artefacts in public urban places can be utilised and combined with mobile phone technologies to facilitate interactions. Printed on stickers, PlaceTagz are QR codes linking to a digital message board enabling collocated users to interact with each other over time resulting in a place-based digital memory. This exploratory project set out to investigate if and how PlaceTagz are used by urban dwellers in a real world deployment. We present findings from analysing content received through PlaceTagz and interview data from application users. QR codes, which do not contain any contextual information, piqued the curiosity of users wondering about the embedded link’s destination and provoked comments in regards to people, place and technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this paper is to investigate the edge condition between the digital layers and the physical layers of the city and how tangible expressions of the interrelationships between them to create and define new experiences of place, creating hybrid place. To date there has been discussion and investigation into understanding the importance of place, similarly into defining hybrid space. This paper explores principles of place and space to question how they can be applied into defining and proposing the notion of hybrid place in urban environments. The integration of media spaces into architecture provide infrastructure for the development of hybrid place. The physical boundaries of urban spaces become blurred through the integration of media such as computer technologies connecting the physical environment with the digital. Literature and case studies that reflect the current trends of use of technology by people in space and place within urban environments are examined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical investigation has been carried out for the coupled thermal boundary layers on both sides of a partition placed in an isosceles triangular enclosure along its middle symmetric line. The working fluid is considered as air which is initially quiescent. A sudden temperature difference between two zones of the enclosure has been imposed to trigger the natural convection. It is anticipated from the numerical simulations that the coupled thermal boundary layers development adjacent to the partition undergoes three distinct stages; namely an initial stage, a transitional stage and a steady state stage. Time dependent features of the coupled thermal boundary layers as well as the overall natural convection flow in the partitioned enclosure have been discussed and compared with the non-partitioned enclosure. Moreover, heat transfer as a form of local and overall average Nusselt number through the coupled thermal boundary layers and the inclined walls is also examined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth of graphene on SiC/Si substrates is an appealing alternative to the growth on bulk SiC for cost reduction and to better integrate the material with Si based electronic devices. In this paper, we present a complete in-situ study of the growth of epitaxial graphene on 3C SiC (111)/Si (111) substrates via high temperature annealing (ranging from 1125˚C to 1375˚C) in ultra high vacuum (UHV). The quality and number of graphene layers have been thoroughly investigated by using x-ray photoelectron spectroscopy (XPS), while the surface characterization have been studied by scanning tunnelling microscopy (STM). Ex-situ Raman spectroscopy measurements confirm our findings, which demonstrate the exponential dependence of the number of graphene layer from the annealing temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semiconductor nanowires (NWs) show tremendous applications in micro/nano-electro-mechanical systems. In order to fulfill their promising applications, an understanding of the mechanical properties of NWs becomes increasingly important. Based on the large-scale molecular dynamics simulations, this work investigated the tensile properties of Si NWs with different faulted stacking layers. Different faulted stacking layers were introduced around the centre of the NW by the insertion or removal of certain stacking layers, inducing twins, intrinsic stacking fault, extrinsic stacking fault, and 9R crystal structure. Stress–strain curves obtained from the tensile deformation tests reveal that the presence of faulted stacking layers has induced a considerable decrease to the yield strength while only a minor decrease to Young's modulus. The brittle fracture phenomenon is observed for all tested NWs. In particular, the formation of a monatomic chain is observed for the perfect NW, which exists for a relatively wide strain range. For the defected NW, the monatomic chain appears and lasts shorter. Additionally, all defected NWs show a fracture area near the two ends, in contrast to the perfect NW whose fracture area is adjacent to the middle. This study provides a better understanding of the mechanical properties of Si NWs with the presence of different faulted stacking layers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Faulted stacking layers are ubiquitously observed during the crystal growth of semiconducting nanowires (NWs). In this paper, we employ the reverse non-equilibrium molecular dynamics simulation to elucidate the effect of various faulted stacking layers on the thermal conductivity (TC) of silicon (Si) NWs. We find that the stacking faults can greatly reduce the TC of the Si NW. Among the different stacking faults that are parallel to the NW's axis, the 9R polytype structure, the intrinsic and extrinsic stacking faults (iSFs and eSFs) exert more pronounced effects in the reduction of TC than the twin boundary (TB). However, for the perpendicularly aligned faulted stacking layers, the eSFs and 9R polytype structures are observed to induce a larger reduction to the TC of the NW than the TB and iSFs. For all considered NWs, the TC does not show a strong relation with the increasing number of faulted stacking layers. Our studies suggest the possibility of tuning the thermal properties of Si NWs by altering the crystal structure via the different faulted stacking layers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Twitter is used for a range of communicative purposes. These extend from personal tweets that address what used to be Twitter’s default question, “What’s happening?”, through one-on-one @reply conversations between close friends and attempts at getting the attention of celebrities and other public actors, to discussions in communities built around specific issues—and back again to broadcast-style statements from well-known individuals and brands to their potentially very large retinue of followers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By 1925, the introduced prickly pear (Opuntia and Nopalea spp.) covered up to 60 million acres of Queensland and New South Wales in what was perceived as prime agricultural land. After 40 years of experimentation, all Queensland Government strategies had failed. Faced with this failure and a diminishing expectation that the land would ever be conquered, buffer zones were proposed by the newly formed Queensland Prickly Pear Land Commission. A close reading of government documents, newspaper reports and local histories about these buffer zones shows how settler anxieties over who could or should occupy the land shaped the kinds of strategies recommended and adopted in relation to this alien species. Physical and cultural techniques were used to manage the uneasy coexistence between prickly pear, on the one hand, and farmers and graziers on the other. Furthermore, this environmental history challenges the notion of racially homogenous closer settlement under the White Australia Policy, showing the many different kinds of livelihood and labour in prickly pear land in the 1920s.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We explored the impact of neighborhood walkability on young adults, early-middle adults, middle-aged adults, and older adults' walking across different neighborhood buffers. Participants completed the Western Australian Health and Wellbeing Surveillance System Survey (2003–2009) and were allocated a neighborhood walkability score at 200 m, 400 m, 800 m, and 1600 m around their home. We found little difference in strength of associations across neighborhood size buffers for all life stages. We conclude that neighborhood walkability supports more walking regardless of adult life stage and is relevant for small (e.g., 200 m) and larger (e.g., 1600 m) neighborhood buffers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrification of vehicular systems has gained increased momentum in recent years with particular attention to constant power loads (CPLs). Since a CPL potentially threatens system stability, stability analysis of hybrid electric vehicle with CPLs becomes necessary. A new power buffer configuration with battery is introduced to mitigate the effect of instability caused by CPLs. Model predictive control (MPC) is applied to regulate the power buffer to decouple source and load dynamics. Moreover, MPC provides an optimal tradeoff between modification of load impedance, variation of dc-link voltage and battery current ripples. This is particularly important during transients or starting of system faults, since battery response is not very fast. Optimal tradeoff becomes even more significant when considering low-cost power buffer without battery. This paper analyzes system models for both voltage swell and voltage dip faults. Furthermore, a dual mode MPC algorithm is implemented in real time offering improved stability. A comprehensive set of experimental results is included to verify the efficacy of the proposed power buffer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Design of a battery energy storage system (BESS) in a buffer scheme is examined for the purpose of attenuating the effects of unsteady input power from wind farms. The design problem is formulated as maximization of an objective function that measures the economic benefit obtainable from the dispatched power from the wind farm against the cost of the BESS. Solution to the problem results in the determination of the capacity of the BESS to ensure constant dispatched power to the connected grid, while the voltage level across the dc-link of the buffer is kept within preset limits. A computational procedure to determine the BESS capacity and the evaluation of the dc voltage is shown. Illustrative examples using the proposed design method are included.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines a buffer scheme to mitigate the negative impacts of power-conditioned loads on network voltage and transient stabilities. The scheme is based on the use of battery energy-storage systems in the buffers. The storage systems ensure that protected loads downstream of the buffers can ride through upstream voltage sags and swells. Also, by controlling the buffers to operate in either constant impedance or constant power modes, power is absorbed or injected by the storage systems. The scheme thereby regulates the rotor-angle deviations of generators and enhances network transient stability. A computational method is described in which the capacity of the storage systems is determined to achieve simultaneously the above dual objectives of load ride-through and stability enhancement. The efficacy of the resulting scheme is demonstrated through numerical examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For Design Science Research (DSR) to gain wide credence as a research paradigm in Information Systems (IS), it must contribute to theory. “Theory cannot be improved until we improve the theorizing process, and we cannot improve the theorizing process until we describe it more explicitly, operate it more self-consciously, and decouple it from validation more deliberately” (Weick 1989, p. 516). With the aim of improved design science theorizing, we propose a DSR abstraction-layers framework that integrates, interlates, and harmonizes key methodological notions, primary of which are: 1) the Design Science (DS), Design Research (DR), and Routine Design (RD) distinction (Winter 2008); 2) Multi Grounding in IS Design Theory (ISDT) (Goldkuhl & Lind 2010); 3) the Idealized Model for Theory Development (IM4TD) (Fischer & Gregor 2011); and 4) the DSR Theorizing Framework (Lee et al. 2011). Though theorizing, or the abstraction process, has been the subject of healthy discussion in DSR, important questions remain. With most attention to date having focused on theorizing for Design Research (DR), a key stimulus of the layered view was the realization that Design Science (DS) produces abstract knowledge at a higher level of generality. The resultant framework includes four abstraction layers: (i) Design Research (DR) 1st Abstract Layer, (ii) Design Science (DS) 2nd Abstract Layer, (iii) DSR Incubation 3rd Layer, and (iv) Routine Design 4th Layer. Differentiating and inter-relating these layers will aid DSR researchers to discover, position, and amplify their DSR contributions. Additionally, consideration of the four layers can trigger creative perspectives that suggest unplanned outputs. The first abstraction layer, including its alternative patterns of activity, is well recognized in the literature. The other layers, however, are less well recognized; and the integrated representation of layers is novel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As printed and flexible plastic electronic gadgets become increasingly viable today, there is a need to develop materials that suit the fabrication processes involved. Two desirable requirements are solution-processable active materials or precursors and low-temperature processability. In this article, we describe a straightforward method of depositing ZnO films by simple spin coating of an organometallic diethylzinc precursor solution and annealing the resulting film at low temperatures (≤200 °C) without involving any synthetic steps. By controlling the humidity in which annealing is conducted, we are able to adjust the intrinsic doping level and carrier concentration in diethylzinc-derived ZnO. Doped or conducting transport layers are greatly preferable to undoped layers as they enable low-resistance contacts and minimize the potential drops. This ability to controllably realize doped ZnO is a key feature of the fabrication process that we describe in this article. We employ field-effect measurements as a diagnostic tool to measure doping levels and mobilities in ZnO and demonstrate that doped ZnO with high charge carrier concentration is ideal for solar cell applications. Respectable power conversion efficiencies (up to 4.5%) are achieved in inverted solar cells that incorporate diethylzinc-derived ZnO films as the electron transport layer and organic blends as the active material. Extensions of this approach to grow ternary and quaternary films with organometallic precursor chemicals will enable solution based growth of a number of semiconductor films as well as a method to dope them.