878 resultados para brain morphology and function in diabetes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Actin stress fibers are dynamic structures in the cytoskeleton, which respond to mechanical stimuli and affect cell motility, adhesion and invasion of cancer cells. In nonmuscle cells, stress fibers have been subcategorized to three distinct stress fiber types: dorsal and ventral stress fibers and transverse arcs. These stress fibers are dissimilar in their subcellular localization, connection to substratum as well as in their dynamics and assembly mechanisms. Still uncharacterized is how they differ in their function and molecular composition. Here, I have studied involvement of nonmuscle alpha-actinin-1 and -4 in regulating distinct stress fibers as well as their localization and function in human U2OS osteosarcoma cells. Except for the correlation of upregulation of alpha-actinin-4 in invasive cancer types very little is known about whether these two actinins are redundant or have specific roles. The availability of highly specific alpha-actinin-1 antibody generated in the lab, revealed localization of alpha-actinin-1 along all three categories of stress fibers while alphaactinin-4 was detected at cell edge, distal ends of stress fibers as well as perinuclear regions. Strikingly, by utilizing RNAi-mediated gene silencing of alpha-actinin-1 resulted in specific loss of dorsal stress fibers and relocalization of alpha-actinin-4 to remaining transverse arcs and ventral stress fibers. Unexpectedly, aberrant migration was not detected in cells lacking alpha-actinin-1 even though focal adhesions were significantly smaller and fewer. Whereas, silencing of alpha-actinin-4 noticeably affected overall cell migration. In summary, as part of my master thesis study I have been able to demonstrate distinct localization and functional patterns for both alpha-actinin-1 and -4. I have identified alpha-actinin-1 to be a selective dorsal stress fiber crosslinking protein as well as to be required for focal adhesion maturation, while alpha-actinin-4 was demonstrated to be fundamental for cell migration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As indicated by several recent studies, magnetic susceptibility of the brain is influenced mainly by myelin in the white matter and by iron deposits in the deep nuclei. Myelination and iron deposition in the brain evolve both spatially and temporally. This evolution reflects an important characteristic of normal brain development and ageing. In this study, we assessed the changes of regional susceptibility in the human brain in vivo by examining the developmental and ageing process from 1 to 83 years of age. The evolution of magnetic susceptibility over this lifespan was found to display differential trajectories between the gray and the white matter. In both cortical and subcortical white matter, an initial decrease followed by a subsequent increase in magnetic susceptibility was observed, which could be fitted by a Poisson curve. In the gray matter, including the cortical gray matter and the iron-rich deep nuclei, magnetic susceptibility displayed a monotonic increase that can be described by an exponential growth. The rate of change varied according to functional and anatomical regions of the brain. For the brain nuclei, the age-related changes of susceptibility were in good agreement with the findings from R2* measurement. Our results suggest that magnetic susceptibility may provide valuable information regarding the spatial and temporal patterns of brain myelination and iron deposition during brain maturation and ageing. © 2013 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eph kinases are the largest family of cell surface receptor tyrosine kinases. The ligands of Ephs, ephrins (EFNs), are also cell surface molecules. Ephs interact with EFNs and the receptors and ligands transmit signals in both directions, i.e., from Ephs to EFNs and from EFNs to Ephs. Ephs and EFNs are widely involved in various developmental, physiological pathophysiological processes. Our group and others have reported the roles of Ephs/EFNs in the immune system. To further investigate the function of EphBs/EFNBs in T cell development and responses, we generated EFNB1, EFNB2, EphB4 conditional gene knockout (KO) mice and EFNB1/2 double KO mice. In the projects using EFNB1 and EFNB2 knockout mice, we specifically deleted EFNB1 or EFNB2 in T cells. The mice had normal size and cellularity of the thymus and spleen as well as normal T cell subpopulations in these organs. The bone marrow progenitors from KO mice and WT mice repopulated the host lymphoid organs to similar extents. The activation and proliferation of KO T cells was comparable to that of control mice. Naïve KO CD4 cells differentiated into Th1, Th2, Th17 and Treg cells similar to naïve control CD4 cells. In EFNB2 KO mice, we observed a significant relative increase of CD4CD8 double negative thymocytes in the thymus. Flowcytometry analysis revealed that there was a moderate increase in the DN3 subpopulation in the thymus. This suggests that EFNB2 is involved in thymocyte development. Our results indicate that the functions of EFNB1 and EFNB2 in the T cell compartment could be compensated by each other or by other members of the EFN family, and that such redundancy safeguards the pivotal roles of EFNB1 and EFNB2 in T cell development and function. In the project using EFNB1/B2 double knockout (dKO) model, we revealed a novel regulatory function of EFNb1 and EFNb2 in stabilizing IL-7Rα expression on the T cell surface. IL-7 plays important roles in thymocyte development, T cell homeostasis and survival. IL-7Rα undergoes internalization upon IL-7 binding. In the dKO mice, we observed reduced IL-7Rα expression in thymocytes and T cells. Moreover, the IL-7Rα internalization was accelerated in dKO CD4 cells upon IL-7 stimulation. In T cell lymphoma cell line, EL4, over-expression of either EFNB1 or EFNB2 retarded the internalization of IL-7Rα. We further demonstrated compromised IL-7 signaling and homeostatic proliferation of dKO T cells. Mechanism study using fluorescence resonance energy transfer and immunoprecipitation demonstrated that physical interaction of EFNB1 and EFNB2 with IL-7Rα was likely responsible for the retarded IL-7Rα internalization. In the last project, using medullary thymic epithelial cell (mTEC)-specific EphB4 knockout mice, we investigated T cell development and function after EphB4 deletion in mTEC. EphB4 KO mice demonstrated normal thymic weight and cellularity. T cell development and function were not influenced by the EphB4 deletion. Lastly, the KO mice developed normal delayed type hypersensitivity. Overall, our results suggest that comprehensive cross interaction between Eph and EFN family members could compensate function of a given deleted member in the T cell development, and only simultaneous deletion of multiple EFNBs will reveal their true function in the immune system. In fact, such redundancy signifies vital roles of Ephs and EFNs in the immune system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 2007, FTO was identified as the first genome-wide association study (GWAS) gene associated with obesity in humans. Since then, various animal models have served to establish the mechanistic basis behind this association. Many earlier studies focussed on FTO’s effects on food intake via central mechanisms. Emerging evidence, however, implicates adipose tissue development and function in the causal relationship between perturbations in FTO expression and obesity. The purpose of this mini review is to shed light on these new studies of FTO function in adipose tissue and present a clearer picture of its impact on obesity susceptibility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuroimaging and electrophysiological investigations have demonstrated numerous differences in brain morphology and function of chronic schizophrenia patients compared to healthy controls. Studying patients at the beginning of their disease without the confounding effects of chronicity, medication, and institutionalization may provide a better understanding of schizophrenia. Recently, at many institutions around the world, special projects have been launched for specialized treatment and research of this interesting patient group. Using the PubMed search engine in this update, the authors summarize recent investigations between January 2002 and September 2006 that focus on whether signs of disconnectivity already exist early in the disease process. They discuss gray and white matter changes, their impact on symptomatology, electroencephalogram-based studies on connectivity, and possible influences of medication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mapuzungun has reduplicative structures based on elements other than verb stems that are of very limited productivity. With verb stems, however, several formal patterns can be distinguished, which consist of the repetition of the lexical verb stem plus the addition of an apparently grammaticalized version of one of three verb roots or a zero morpheme. The previous literature has attempted to identify form/function correlations for these more or less productive verbal reduplicative patterns, and the present paper contributes to the discussion by surveying older studies and exploring several cases that suggest that such form/function correspondences are substantially less straightforward than a casual observer might think.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We assessed the relationship between exposure to organohalogen polluted minke whale (Balaenoptera acutorostrata) blubber and liver morphology and function in a generational controlled study of 28 Greenland sledge dogs (Canis familiaris). The prevalence of portal fibrosis, mild bile duct hyperplasia, and vascular leukocyte infiltrations was significantly higher in the exposed group (all Chi-square: p<0.05). In case of granulomas, the frequency was significantly highest in the bitches (P generation) while the prevalence of portal fibrosis was highest in the F generation (pups) (both Chi-square: p<0.05). No significant difference between exposed and controls was found for bile acid, ALAT, and ALKP, while ASAT and LDH were significantly highest in the control group (both ANOVA: p<0.05). We therefore suggest that a daily intake of 50-200 g environmentally organohalogen polluted minke whale blubber can cause liver lesions in Greenland sledge dogs. It is reasonable to infer that other apex predators such as polar bears (Ursus maritimus) and humans may suffer from similar impacts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NeuroAIDS persists in the era of combination antiretroviral therapies. We describe here the recovery of brain structure and function following 6 months of therapy in a treatment-naive patient presenting with HIV-associated dementia. The patient’s neuropsychological test performance improved and his total brain volume increased by more than 5 %. Neuronal functional connectivity measured by magnetoencephalography changed from a pattern identical to that observed in other HIV-infected individuals to one that was indistinguishable from that of uninfected control subjects. These data suggest that at least some of the effects of HIV on the brain can be fully reversed with treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thyroid hormone plays an essential role in mammalian brain maturation and function, in large part by regulating the expression of specific neuronal genes. In this tissue, the type 2 deiodinase (D2) appears to be essential for providing adequate levels of the active thyroid hormone 3,5,3′-triiodothyronine (T3) during the developmental period. We have studied the regional and cellular localization of D2 mRNA in the brain of 15-day-old neonatal rats. D2 is expressed in the cerebral cortex, olfactory bulb, hippocampus, caudate, thalamus, hypothalamus, and cerebellum and was absent from the white matter. At the cellular level, D2 is expressed predominantly, if not exclusively, in astrocytes and in the tanycytes lining the third ventricle and present in the median eminence. These results suggest a close metabolic coupling between subsets of glial cells and neurons, whereby thyroxine is taken up from the blood and/or cerebrospinal fluid by astrocytes and tanycytes, is deiodinated to T3, and then is released for utilization by neurons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The diagnosis and monitoring of ocular disease presents considerable clinical difficulties for two main reasons i) the substantial physiological variation of anatomical structure of the visual pathway and ii) constraints due to technical limitations of diagnostic hardware. These are further confounded by difficulties in detecting early loss or change in visual function due to the masking of disease effects, for example, due to a high degree of redundancy in terms of nerve fibre number along the visual pathway. This thesis addresses these issues across three areas of study: 1. Factors influencing retinal thickness measures and their clinical interpretation As the retina is the principal anatomical site for damage associated with visual loss, objective measures of retinal thickness and retinal nerve fibre layer thickness are key to the detection of pathology. In this thesis the ability of optical coherence tomography (OCT) to provide repeatable and reproducible measures of retinal structure at the macula and optic nerve head is investigated. In addition, the normal physiological variations in retinal thickness and retinal nerve fibre layer thickness are explored. Principal findings were: • Macular retinal thickness and optic nerve head measurements are repeatable and reproducible for normal subjects and diseased eyes • Macular and retinal nerve fibre layer thickness around the optic nerve correlate negatively with axial length, suggesting that larger eyes have thinner retinae, potentially making them more susceptible to damage or disease • Foveola retinal thickness increases with age while retinal nerve fibre layer thickness around the optic nerve head decreases with age. Such findings should be considered during examination of the eye with suspect pathology or in long-term disease monitoring 2. Impact of glucose control on retinal anatomy and function in diabetes Diabetes is a major health concern in the UK and worldwide and diabetic retinopathy is a major cause of blindness in the working population. Objective, quantitative measurements of retinal thickness. particularly at the macula provide essential information regarding disease progression and the efficacy of treatment. Functional vision loss in diabetic patients is commonly observed in clinical and experimental studies and is thought to be affected by blood glucose levels. In the first study of its kind, the short term impact of fluctuations in blood glucose levels on retinal structure and function over a 12 hour period in patients with diabetes are investigated. Principal findings were: • Acute fluctuations in blood glucose levels are greater in diabetic patients than normal subjects • The fluctuations in blood glucose levels impact contrast sensitivity scores. SWAP visual fields, intraocular pressure and diastolic pressure. This effect is similar for type 1 and type 2 diabetic patients despite the differences in their physiological status. • Long-term metabolic control in the diabetic patient is a useful predictor in the fluctuation of contrast sensitivity scores. • Large fluctuations in blood glucose levels and/or visual function and structure may be indicative of an increased risk of development or progression of retinopathy 3. Structural and functional damage of the visual pathway in glaucomatous optic neuropathy The glaucomatous eye undergoes a number of well documented pathological changes including retinal nerve fibre loss and optic nerve head damage which is correlated with loss of functional vision. In experimental glaucoma there is evidence that glaucomatous damage extends from retinal ganglion cells in the eye, along the visual pathway, to vision centres in the brain. This thesis explores the effects of glaucoma on retinal nerve fibre layer thickness, ocular anterior anatomy and cortical structure, and its correlates with visual function in humans. Principal findings were: • In the retina, glaucomatous retinal nerve fibre layer loss is less marked with increasing distance from the optic nerve head, suggesting that RNFL examination at a greater distance than traditionally employed may provide invaluable early indicators of glaucomatous damage • Neuroretinal rim area and retrobulbar optic nerve diameter are strong indicators of visual field loss • Grey matter density decreases at a rate of 3.85% per decade. There was no clear evidence of a disease effect • Cortical activation as measured by fMRI was a strong indicator of functional damage in patients with significant neuroretinal rim loss despite relatively modest visual field defects These investigations have shown that the effects of senescence are evident in both the anterior and posterior visual pathway. A variety of anatomical and functional diagnostic protocols for the investigation of damage to the visual pathway in ocular disease are required to maximise understanding of the disease processes and thereby optimising patient care.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite its large impact on the individual and society, we currently have only a rudimentary understanding of the biological basis of Major Depressive Disorder, even less so in adolescent populations. This thesis focuses on two research questions. First, how do adolescents with depression differ from adolescents who have never been depressed on (1a) brain morphology and (1b) DNA methylation? We studied differences in the fronto-limbic system (a collection of areas responsible for emotion regulation) and methylation at the serotonin transporter (SLC6A4) and FK506 binding protein gene (FKBP5) genes (two genes strongly linked to stress regulation and depression). Second, how does childhood trauma, which is known to increase risk for depression, affect (2a) brain development and (2b) SLC6A4 and FKBP5 methylation? Further, (2c) how might DNA methylation explain how trauma affects brain development in depression? We studied these questions in 24 adolescent depressed patients and 21 controls. We found that (1a) depressed adolescents had decreased left precuneus volume and greater volume of the left precentral gyrus compared to controls; however, no differences in fronto-limbic morphology were identified. Moreover, (1b) individuals with depression had lower levels of FKBP5 methylation than controls. In line with our second hypothesis (2a) greater levels of trauma were associated with decreased volume of a number of fronto-limbic regions. Further, we found that (2b) greater trauma was associated with decreased SLC6A4, but not FKBP5, methylation. Finally, (2c) greater FKBP5, but not SLC6A4, methylation was associated with decreased volume of a number of fronto-limbic regions. The results of this study suggest an association among trauma, DNA methylation and brain development in youth, but the direction of these relationships appears to be inconsistent. Future studies using a longitudinal design will be necessary to clarify these results and help us understand how the brain and epigenome change over time in depressed youth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose Radiation therapy (RT) is often recommended in the treatment of pelvic cancers. Following RT, a high prevalence of pelvic floor dysfunctions (urinary incontinence, dyspareunia, and fecal incontinence) is reported. However, changes in pelvic floor muscles (PFMs) after RT remain unclear. The purpose of this review was to systematically document the effects of RT on the PFM structure and function in patients with cancer in the pelvic area. Methods An electronic literature search using Pubmed Central, CINAHL, Embase, and SCOPUS was performed from date of inception up to June 2014. The following keywords were used: radiotherapy, muscle tissue, and pelvic floor. Two reviewers selected the studies in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses Statement (PRISMA). Out of the 369 articles screened, 13 met all eligibility criteria. The methodological quality was assessed using the QualSyst scoring system, and standardized mean differences were calculated. Results Thirteen studies fulfilled all inclusion criteria, from which four were of good methodological quality. One presented strong evidence that RT affects PFM structure in men treated for prostate cancer. Four presented high-level evidence that RT affects PFM function in patients treated for rectal cancer. Meta-analysis was not possible due to heterogeneity and lack of descriptive statistics. Conclusion There is some evidence that RT has detrimental impacts on both PFMs’ structure and function. Implications for cancer survivors A better understanding of muscle damage and dysfunction following RT treatment will improve pelvic floor rehabilitation and, potentially, prevention of its detrimental impacts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose Radiation therapy (RT) is often recommended in the treatment of pelvic cancers. Following RT, a high prevalence of pelvic floor dysfunctions (urinary incontinence, dyspareunia, and fecal incontinence) is reported. However, changes in pelvic floor muscles (PFMs) after RT remain unclear. The purpose of this review was to systematically document the effects of RT on the PFM structure and function in patients with cancer in the pelvic area. Methods An electronic literature search using Pubmed Central, CINAHL, Embase, and SCOPUS was performed from date of inception up to June 2014. The following keywords were used: radiotherapy, muscle tissue, and pelvic floor. Two reviewers selected the studies in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses Statement (PRISMA). Out of the 369 articles screened, 13 met all eligibility criteria. The methodological quality was assessed using the QualSyst scoring system, and standardized mean differences were calculated. Results Thirteen studies fulfilled all inclusion criteria, from which four were of good methodological quality. One presented strong evidence that RT affects PFM structure in men treated for prostate cancer. Four presented high-level evidence that RT affects PFM function in patients treated for rectal cancer. Meta-analysis was not possible due to heterogeneity and lack of descriptive statistics. Conclusion There is some evidence that RT has detrimental impacts on both PFMs’ structure and function. Implications for cancer survivors A better understanding of muscle damage and dysfunction following RT treatment will improve pelvic floor rehabilitation and, potentially, prevention of its detrimental impacts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In children, joint hypermobility (typified by structural instability of joints) manifests clinically as neuro-muscular and musculo-skeletal conditions and conditions associated with development and organization of control of posture and gait (Finkelstein, 1916; Jahss, 1919; Sobel, 1926; Larsson, Mudholkar, Baum and Srivastava, 1995; Murray and Woo, 2001; Hakim and Grahame, 2003; Adib, Davies, Grahame, Woo and Murray, 2005:). The process of control of the relative proportions of joint mobility and stability, whilst maintaining equilibrium in standing posture and gait, is dependent upon the complex interrelationship between skeletal, muscular and neurological function (Massion, 1998; Gurfinkel, Ivanenko, Levik and Babakova, 1995; Shumway-Cook and Woollacott, 1995). The efficiency of this relies upon the integrity of neuro-muscular and musculo-skeletal components (ligaments, muscles, nerves), and the Central Nervous System’s capacity to interpret, process and integrate sensory information from visual, vestibular and proprioceptive sources (Crotts, Thompson, Nahom, Ryan and Newton, 1996; Riemann, Guskiewicz and Shields, 1999; Schmitz and Arnold, 1998) and development and incorporation of this into a representational scheme (postural reference frame) of body orientation with respect to internal and external environments (Gurfinkel et al., 1995; Roll and Roll, 1988). Sensory information from the base of support (feet) makes significant contribution to the development of reference frameworks (Kavounoudias, Roll and Roll, 1998). Problems with the structure and/ or function of any one, or combination of these components or systems, may result in partial loss of equilibrium and, therefore ineffectiveness or significant reduction in the capacity to interact with the environment, which may result in disability and/ or injury (Crotts et al., 1996; Rozzi, Lephart, Sterner and Kuligowski, 1999b). Whilst literature focusing upon clinical associations between joint hypermobility and conditions requiring therapeutic intervention has been abundant (Crego and Ford, 1952; Powell and Cantab, 1983; Dockery, in Jay, 1999; Grahame, 1971; Childs, 1986; Barton, Bird, Lindsay, Newton and Wright, 1995a; Rozzi, et al., 1999b; Kerr, Macmillan, Uttley and Luqmani, 2000; Grahame, 2001), there has been a deficit in controlled studies in which the neuro-muscular and musculo-skeletal characteristics of children with joint hypermobility have been quantified and considered within the context of organization of postural control in standing balance and gait. This was the aim of this project, undertaken as three studies. The major study (Study One) compared the fundamental neuro-muscular and musculo-skeletal characteristics of 15 children with joint hypermobility, and 15 age (8 and 9 years), gender, height and weight matched non-hypermobile controls. Significant differences were identified between previously undiagnosed hypermobile (n=15) and non-hypermobile children (n=15) in passive joint ranges of motion of the lower limbs and lumbar spine, muscle tone of the lower leg and foot, barefoot CoP displacement and in parameters of barefoot gait. Clinically relevant differences were also noted in barefoot single leg balance time. There were no differences between groups in isometric muscle strength in ankle dorsiflexion, knee flexion or extension. The second comparative study investigated foot morphology in non-weight bearing and weight bearing load conditions of the same children with and without joint hypermobility using three dimensional images (plaster casts) of their feet. The preliminary phase of this study evaluated the casting technique against direct measures of foot length, forefoot width, RCSP and forefoot to rearfoot angle. Results indicated accurate representation of elementary foot morphology within the plaster images. The comparative study examined the between and within group differences in measures of foot length and width, and in measures above the support surface (heel inclination angle, forefoot to rearfoot angle, normalized arch height, height of the widest point of the heel) in the two load conditions. Results of measures from plaster images identified that hypermobile children have different barefoot weight bearing foot morphology above the support surface than non-hypermobile children, despite no differences in measures of foot length or width. Based upon the differences in components of control of posture and gait in the hypermobile group, identified in Study One and Study Two, the final study (Study Three), using the same subjects, tested the immediate effect of specifically designed custom-made foot orthoses upon balance and gait of hypermobile children. The design of the orthoses was evaluated against the direct measures and the measures from plaster images of the feet. This ascertained the differences in morphology of the modified casts used to mould the orthoses and the original image of the foot. The orthoses were fitted into standardized running shoes. The effect of the shoe alone was tested upon the non-hypermobile children as the non-therapeutic equivalent condition. Immediate improvement in balance was noted in single leg stance and CoP displacement in the hypermobile group together with significant immediate improvement in the percentage of gait phases and in the percentage of the gait cycle at which maximum plantar flexion of the ankle occurred in gait. The neuro-muscular and musculo-skeletal characteristics of children with joint hypermobility are different from those of non-hypermobile children. The Beighton, Solomon and Soskolne (1973) screening criteria successfully classified joint hypermobility in children. As a result of this study joint hypermobility has been identified as a variable which must be controlled in studies of foot morphology and function in children. The outcomes of this study provide a basis upon which to further explore the association between joint hypermobility and neuro-muscular and musculo-skeletal conditions, and, have relevance for the physical education of children with joint hypermobility, for footwear and orthotic design processes, and, in particular, for clinical identification and treatment of children with joint hypermobility.