917 resultados para bovine viral diarrhea
Resumo:
Since little information is available regarding cellular antigen mapping and the involvement of non-neuronal cells in the pathogenesis of bovine herpesvirus type 5 (BHV-5) infection, it were determined the BHV-5 distribution, the astrocytic reactivity, the involvement of lymphocytes and the presence of matrix metalloproteinase (MMP)-9 in the brain of rabbits experimentally infected with BHV-5. Twelve New Zealand rabbits that were seronegative for BHV-5 were used for virus inoculation, and five rabbits were used as mock-infected controls. The rabbits were kept in separate areas and were inoculated intranasally with 500 μl of virus suspension (EVI 88 Brazilian isolate) into each nostril (virus titer, 107.5 TCID50). Control rabbits were inoculated with the same volume of minimum essential medium. Five days before virus inoculation, the rabbits were submitted to daily administration of dexamethasone. After virus inoculation, the rabbits were monitored clinically on a daily basis. Seven rabbits showed respiratory symptoms and four animals exhibited neurological symptoms. Tissue sections were collected for histological examination and immunohistochemistry to examine BHV-5 antigens, astrocytes, T and B lymphocytes and MMP-9. By means of immunohistochemical and PCR methods, BHV-5 was detected in the entire brain of the animals which presented with neurological symptoms, especially in the trigeminal ganglion and cerebral cortices. Furthermore, BHV-5 antigens were detected in neurons and/or other non-neural cells. In addition to the neurons, most infiltrating CD3 T lymphocytes observed in these areas were positive for MMP-9 and also for BHV-5 antigen. These infected cells might contribute to the spread of the virus to the rabbit brain along the trigeminal ganglia and olfactory nerve pathways. © 2013 Elsevier Ltd.
Resumo:
Bovine herpesvirus 5 (BoHV-5) is an α-herpesvirus that causes neurological disease in young cattle and is also occasionally involved in reproductive disorders. Although there have been many studies of the apoptotic pathways induced by viruses belonging to the family Herpesviridae, there is little information about the intrinsic programmed cell death pathway in host-BoHV-5 interactions. We found that BoHV-5 is able to replicate in both mesenchymal and epithelial cell lines, provoking cytopathology that is characterized by cellular swelling and cell fusion. Viral antigens were detected in infected cells by immunofluorescence assay at 48 to 96 h post-infection (p.i.). At 48 to 72 h p.i., anti-apoptotic BCL-2 antigens were found at higher levels than Bax antigens; the latter is considered a pro-apoptotic protein. Infected cells had increased BCL-2 phenotype cells from 48 to 96 h p.i., based on flow cytometric analysis. At 48 to 96 h p.i., Bax mRNA was not expressed in any of the infected cell monolayers. In contrast, BCL-2 mRNA was found at high levels at all p.i. in both types of cells. BoHV-5 replication apparently modulates BCL-2 expression and gene transcription, enhancing production of virus progeny. © FUNPEC-RP.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Medicina Veterinária - FMVZ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Meningoencephalitis by Herpesvirus type 5 (BoHV-5) in cattle has some features that are similar to those of herpetic encephalitis in humans and other animal species. Human Herpesvirus 3 (commonly known as Varicella-zoster virus 1), herpes simplex viruses (HSV), and equid Herpesvirus 1 (EHV-1) induce an intense inflammatory, vascular and cellular response. In spite of the many reports describing the histological lesions associated with natural and experimental infections, the immunopathological mechanisms for the development of neurological disorder have not been established. A total of twenty calf brains were selected from the Veterinary School, University of São Paulo State, Araçatuba, Brazil, after confirmation of BoHV-5 infection by virus isolation as well as by a molecular approach. The first part of the study characterized the microscopic lesions associated with the brain areas in the central nervous system (CNS) that tested positive in a viral US9 gene hybridization assay. The frontal cortex (Fc), parietal cortex (Pc), thalamus (T) and mesencephalon (M) were studied. Secondly, distinct pathogenesis mechanisms that take place in acute cases were investigated by an immunohistochemistry assay. This study found the frontal cortex to be the main region where intense oxidative stress phenomena (AOP-1) and synaptic protein expression (SNAP-25) were closely related to inflammatory cuffs, satellitosis and gliosis, which represent the most frequently observed neurological lesions. Moreover, MMP-9 expression was shown to be localized in the leptomeninges, in the parenchyma and around mononuclear infiltrates (p < 0.0001). These data open a new perspective in understanding the role of the AOP-1, MMP-9 and SNAP-25 proteins in mediating BoHV-5 pathogenesis and the strategies of host-virus interaction in order to invade the CNS.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Members of the subfamily Alphaherpesvirinae use the epithelium of the upper respiratory and/or genital tract as preferential sites for primary replication. However, bovine herpesvirus 5 (BoHV5) is neurotropic and neuroinvasive and responsible for meningoencephalitis in cattle and in animal models. A related virus, BoHV1 has also been occasionally implicated in natural cases of neurological infection and disease in cattle. The aim of the present study was to assess the in vitro effects of BoHV1 and BoHV5 replication in neuron-like cells. Overall, cytopathic effects, consisting of floating rounded cells, giant cells and monolayer lysis, induced by both viruses at 48 h postinfection (p.i.) resulted in a loss of cell viability and high virus titres (r = 0.978). The BoHV1 Cooper strain produced the lowest titres in neuron-like cells, although viral DNA was detected in infected cells during all experiments. Virus replication in infected cells was demonstrated by immunocytochemistry, flow cytometry and qPCR assays. BoHV antigens were better visualized at 48 h p.i. and flow cytometry analysis showed that SV56/90 and Los Angeles antigens were present at higher levels. In spite of the fact that BoHV titres dropped at 48 h p.i, viral DNA remained detectable until 120 h p.i. Sensitive TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) and annexin V assays were used to identify apoptosis. BoHV5 induced death in approximately 50 % of cells within 24 h p.i., similar to what has been observed for BoHV1 Los Angeles. Infection with the BoHV1 Cooper strain resulted in 26.37 % of cells being in the early stages of apoptosis; 63.69 % of infected cells were considered viable. Modulation of mitochondrial function, as measured by mitochondrial membrane depolarization, was synchronous with the virus replication cycle, cell viability and virus titres at 48 h p.i. Our results indicate that apoptosis plays an important role in preventing neuronal death and provides a bovine-derived in vitro system to study herpesvirus-neuron interactions.
Resumo:
Rotavirus is an important cause of neonatal diarrhea in humans and several animal species, including calves. A study was conducted to examine 792 fecal samples collected from calves among 65 dairy and beef herds distributed in two of Brazil's major livestock producing regions, aiming to detect the occurrence of rotavirus and perform a molecular characterization of the rotavirus according to G and P genotypes in these regions. A total of 40 (5.05%) samples tested positive for rotavirus by the polyacrylamide gel electrophoresis (PAGE) technique. The molecular characterization was performed by multiplex semi-nested RT-PCR reactions, which indicated that the associations of genotypes circulating in herds in Brazil's southeastern region were G6P[11], G10P[11], G[-]P[5] + [11], G[-]P[6] in the state of Sao Paulo and G6P[11], G8P[5], G11P[11], G10P[11] in the state of Minas Gerais. In the central-western region, the genotypes G6P[5] + [11], G6P[5], G8P[-], G6P[11], G [-] P[1], G[-] P[11], and G[-] P[5] were detected in the state of Goias, while the genotypes G6P[5], G8[P11], G6[P11], G8[P1], G8[P5], G6[P1] were circulating in herds in the state of Mato Grosso do Sul. The genotypic diversity of bovine rotavirus found in each region under study underlines the importance of characterizing the circulating samples in order to devise the most effective prophylactic measures.
Resumo:
REASONS FOR PERFORMING STUDY: Sarcoids are nonmetastasising, yet locally aggressive skin tumours that constitute the most frequent neoplasm in equids. Infection by bovine papillomaviruses types 1 and 2 (BPV-1, BPV-2) has been recognised as major causative factor in sarcoid pathogenesis, but a possible correlation of intralesional virus load with disease severity has not been established thus far. HYPOTHESIS: Given the pathogenic role of BPV-1 and BPV-2 in sarcoid disease, we suggest that intralesional viral DNA concentration may reflect the degree of affection. METHODS: Severity of disease was addressed by recording the tumour growth kinetics, lesion number and tumour type for 37 sarcoid-bearing horses and one donkey. Viral load was estimated via quantitative real-time PCR (qPCR) of the E2, E5, L1 and L2 genes from the BPV-1/-2 genome for one randomly selected lesion per horse and correlated with disease severity. RESULTS: Quantitative PCR against E2 identified viral DNA concentrations ranging from 0-556 copies/tumour cell. Of 16 horses affected by quiescent, slowly growing single tumours or multiple mild-type lesions, 15 showed a viral load up to 1.4 copies per cell. In stark contrast, all equids (22/22) bearing rapidly growing and/or multiple aggressive sarcoids had a viral load between 3 and 569 copies per cell. Consistent results were obtained with qPCR against E5, L1 and L2. CONCLUSIONS: While tumours of the same clinical type carried variable virus load, confirming that viral titre does not determine clinical appearance, we identified a highly significant correlation between intralesional viral load and disease severity. POTENTIAL RELEVANCE: The rapid determination of BPV viral load will give a reliable marker for disease severity and may also be considered when establishing a therapeutic strategy.
Resumo:
The protozoon parasite Cryptosporidium parvum is an important cause of diarrhea in farm animals, but it can also infect other animals and humans. In this case report, oocysts of Cryptosporidium spp. were microscopically detected by modified Ziehl-Neelsen staining in the feces of a 9 day old Arabian colt presented with yellowish, foul smelling, diarrhea and fever of 40 degrees C. PCR and sequencing of the isolate revealed C. parvum (bovine genotype). Hemato-chemical analysis of the foals blood revealed a marked hypogammaglobulinaemia (IgG 108mg/dl). The colt responded well to a supportive therapy and administration of plasma (until a gammaglobulin-concentration of 620 mg/dl was reached) and was released in good health from the clinic after 10 days. Follow-up testing for Cryptosporidium oocycsts remained negative. Cryptosporidiosis with life-threatening diarrhea is a rare diagnosis in foals in Switzerland. Immunodeficiency increases the risk for cryptosporidiosis. We hypothesize that the low concentration of gammaglobulins together with the weak INF-gamma response normally observed in young foals may have favored the clinical manifestation with diarrhea. Foals with diarrhea should be screened for cryptosporidia with specific tests.
Resumo:
Clinical respiratory disease occurs almost every year in fall calves in the McNay Farm herd. Diagnostic procedures have implicated Haemophilus somnus (H. somnus) and bovine respiratory syncyial virus (BRSV) as the infectious agents primarily associated with this disease. Therefore, the 1995 calves were closely monitored after weaning and during the course of a respiratory disease. Serologic evidence indicated the involvement of the same two agents in the pathogenesis of the disease. Also, experimental evidence suggested a role for a preexisting immediate hypersensitivity to H. somnus and the development of this type of response to BRSV. We theorize that the pathogenesis of the clinical disease involved infection with H. somnus, establishment of immediate hypersensitivity in the lungs, viral infection with associated pathologic lesions, and viral exacerbation of the immediate hypersensitivity reaction with resultant clinical signs and tissue damage.
Resumo:
We have identified a new group A rotavirus associated with diarrheic calves in the field. The VP7 gene of this virus (designated VMRI-29), appears to differ genetically from that of the reference strain NCDV-Lincoln. Studies are underway to determine the importance of this genetic variant in the etiology of rotavirus-induced calf diarrhea.
Resumo:
Question: Low back pain is an increasing global health problem, which is associated with intervertebral disc (IVD) damage and de- generation. Major changes occur in the nucleus pulposus (NP), with the degradation of the extracellular matrix (ECM) [1]. Further studies showed that growth factors from the transforming growth factor (TGF) and bone morphogenic proteins (BMP) family may induce chondrogenic differentiation of mesenchymal stem cells (MSC) [2]. Focusing on non-viral gene therapies and their possible translation into the clinics, we investigated if GDF6 (syn. BMP13 or CDMP2) can induce regeneration of degraded NP. We hypothesized that IVD transfected with plasmid over-expressing GDF6 also up-regulates other NP- and chondrogenic cell markers and enhances ECM deposition. Methods: Bovine IVD cells were isolated by pronase/collagenase II overnight digestion. After monolayer expansion up to passage 3, cells were transfected with the plasmid pGDF6 (RG211366, Origene, SF) or with green fluorescence protein (GFP) control using the NeonÒ transfection system (Invitrogen, Basel), both equipped with a Cy- tomegalovirus (CMV) promotor to induce over-expression. We tested a range of yet unpublished parameters for each of the primary disc cells to optimize efficiency. To test a non-viral gene therapy applied directly to 3D whole organ culture, bovine IVDs were harvested from fresh tails obtained from the abattoir within 5 h post-mortem [3]. Discs were then pre-incubated for 24 h in high glucose Dulbecco’s Modified Eagle Medium and 5 % fetal calf serum. Each disc was transfected by injection of 5 lg of plasmid GDF6 (Origene, RG211366) into the center by 25G needle and using Hamilton sy- ringe. Electroporation was performed using 2-needle array electrode or tweezertrodes; 8 pulses at 200mv/cm with an interval of 10 ms were applied using ECM830 Square Wave Electroporation System (Harvard Apparatus, MA) (Fig. 1). After transfection discs were cultured for 72 h to allow expression of GFP or GDF6. Discs were then fixed, cryosectioned and analysed by immunofluorescence against GDF6. Results: We successfully transfected bovine NP and AF cells in monolayer culture with the two plasmids using a 1,400 V, 20 ms and 2 pulses with a *25 % efficiency using 0.15 M cells and 3 lg DNA (Fig. 1). Organ IVD culture transfection revealed GFP6 positive staining in the centre of the disc using 2-needle array electrode. Results from tweezertrodes did not show any GFP posi- tive cells. Conclusions: We identified novel parameters to successfully transfect primary bovine IVD cells. For transfection of whole IVD explants electroporation parameters need to be further optimized. Acknowledgments: This study was supported by the Lindenhof Foundation ‘‘Forschung und Lehre’’ (Project no. 13-02-F). References 1. Roughly PJ (2004) Spine (Phila) 29:2691–2699 2. 3. Clarke LE, McConell JC, Sherratt MJ, Derby B, Richardson SM, Hoyland JA (2014) Arthritis Res Ther 16:R67 Chan SC, Gantenbein-Ritter B (2012) J Vis Exp 60(60):e3490