940 resultados para bovine papillomavirus type 8
Resumo:
The bovine papillomavirus type 1 (BPV-1) exonic splicing suppressor (ESS) is juxtaposed immediately downstream of BPV-1 splicing enhancer 1 and negatively modulates selection of a suboptimal 3′ splice site at nucleotide 3225. The present study demonstrates that this pyrimidine-rich ESS inhibits utilization of upstream 3′ splice sites by blocking early steps in spliceosome assembly. Analysis of the proteins that bind to the ESS showed that the U-rich 5′ region binds U2AF65 and polypyrimidine tract binding protein, the C-rich central part binds 35- and 54–55-kDa serine/arginine-rich (SR) proteins, and the AG-rich 3′ end binds alternative splicing factor/splicing factor 2. Mutational and functional studies indicated that the most critical region of the ESS maps to the central C-rich core (GGCUCCCCC). This core sequence, along with additional nonspecific downstream nucleotides, is sufficient for partial suppression of spliceosome assembly and splicing of BPV-1 pre-mRNAs. The inhibition of splicing by the ESS can be partially relieved by excess purified HeLa SR proteins, suggesting that the ESS suppresses pre-mRNA splicing by interfering with normal bridging and recruitment activities of SR proteins.
Resumo:
L’histoire naturelle de l’infection anale par le virus du papillome de type 16 (VPH-16) est mal définie pour les hommes ayant des relations sexuelles avec d’autres hommes (HARSAHs) VIH-séropositifs. Le but de cette étude était d’évaluer l’association entre la charge épisomale et intégrée du VPH-16 et la progression de la néoplasie intraépithéliale anale (AIN). Les charges épisomales et intégrées du VPH-16 furent mesurées par PCR quantitatif en temps réel sur 665 spécimens anaux obtenus de 135 hommes VPH-16-positifs participant à l’étude prospective HIPVIRG (Human Immunodeficiency and Papilloma VIrus Research Group). Le grade de l’AIN fut déterminé sur des biopsies obtenues lors des anuscopies à haute résolution périodiques. L’intégration du VPH-16 fut confirmée par DIPS-PCR pour démontrer la présence de jonctions virales-cellulaires. La charge épisomale du VPH-16 [ratio de cote (OR) 1.5, intervalle de confiance (IC) à 95%=1.1–2.1], le nombre de types de VPH [OR 1.4 (IC 95%=1.1–1.8)] et le tabagisme actuel [OR 4.8 (IC 95%=1.3–18.6)], mais non la charge intégrée, furent associés aux lésions de haut-grade (AIN-2,3) après ajustement pour l’âge et le décompte des lymphocytes CD4. La charge épisomale du VPH-16 était le seul facteur prédictif de progression de l’AIN de bas-grade (AIN-1) vers l’AIN-2,3 [OR 8.0 (IC 95%=1.2–55.4)]. Les spécimens avec une charge épisomale du VPH-16 élevée étaient moins susceptibles de contenir de l’intégration [OR 0.5 (IC 95%=0.3–0.8)]. L’intégration du VPH-16 fut détectée en absence d’AIN, dans l’AIN-1 et dans l’AIN-2,3. L’analyse des jonctions virales-cellulaires ne permit pas d’identifier un site d’intégration spécifique.
Resumo:
Exogenous transfer RNAs (tRNAs) favor translation of bovine papillomavirus 1 wild-type (wt) L1 mRNA in in vitro translation systems (Zhou et al. 1999, J. Virol., 73, 4972-4982). We, therefore, investigated whether papillomavirus (PV) wt L1 protein expression could be enhanced in eukaryotic cells following exogenous tRNA supplementation. Both Chinese hamster ovary (CHO) and Cos1 cells, transfected with PV1 wt L1 genes, effectively transcribed the genes but did not translate them. However, L1 protein translation was demonstrated following co-transfection with the L1 gene and a gene expressing tRNA(Ser)(CGA). Cell lines, stably transfected with a bovine papillomavirus 1 (BPV1) wt L1 expression construct, produced L1 protein after the transfection of the tRNA(Ser)(CGA) gene, but not following the transfection with basal vectors, suggesting that tRNA(Ser)(CGA) gene enhanced wt L1 translation as a result of endogenous tRNA alterations and phosphorylation of translation initiation factors elF4E and elF2alpha in the tRNA(Ser)(CGA) transfected L1 cell lines. The tRNA(Ser)(CGA) gene expression significantly reduced translation of L1 proteins expressed from codon-modified (HB) PV L1 genes utilizing mammalian preferred codons, but had variable effects on translation of green fluorescent proteins (GFPs) expressed from six serine GFP variants. The changes of tRNA pools appear to match the codon composition of PV wt and HB L1 genes and serine GFP variants to regulate translation of their mRNAs. These findings demonstrate for the first time in eukaryotic cells that translation of the target genes can be differentially influenced by the provision of a single tRNA expression construct.
Resumo:
Many cervical cancers express the E7 protein of human papillomavirus 16 as a tumor-specific Ag (TSA). To establish the role of E7-specific T cell help in CD8(+) CTL-mediated tumor regression, C57BL/6J mice were immunized with E7 protein or with a peptide (GF001) comprising a minimal CTL epitope of E7, together with different adjuvants, Immunized mice were challenged with an E7-expressing tumor cell line, EL4.E7. Growth of EL4.E7 was reduced following immunization with E7 and Quil-A (an adjuvant that induced a Th1-type response to E7) or with GF001 and Quil-A, Depletion of CD8(+) cells, but not CD4(+) cells, from an immunized animal abrogated protection, confirming that E7-specific CTL are necessary and sufficient for TSA-specific protection in this model. Immunization with E7 and Algammulin (an alum-based adjuvant) induced a Th2-like response and provided; no tumor protection. To investigate whether a Th2 T helper response to E7 could prevent the development of an E7-specific CTL-mediated protection, mice were simultaneously immunized with E7/Algammulin and GF001/Quil-A or, alternatively, were immunized with GF011/Quil-A 8 wk after immunization with E7/Algammulin, Tumor protection was observed in each case. We conclude that an established Th2 response to a TSA does not prevent the development of TSA-specific tumor protective CTL.
Resumo:
The co-evolution of papillomaviruses (PV) and their mammalian hosts has produced mechanisms by which PV might avoid specific and non-specific host immune responses. Low level expression of PV proteins in infected basal epithelial cells, together with an absence of inflammation and of virus-induced cell lysis, restricts the opportunity for effective PV protein presentation to immunocytes by dendritic cells. Additionally, PV early proteins, by a range of mechanisms, may restrict the efficacy of antigen presentation by these cells. Should an immune response be induced to PV antigens, resting keratinocytes (KC) appear resistant to interferon-gamma-enhanced mechanisms of cytotoxic T-lymphocyte (CTL)-mediated lysis, and expression of PV antigens by resting KC can tolerise PV-specific CTL. Thus, KC, in the absence of inflammation, may represent an immunologically privileged site for PV infection. Together, these mechanisms play a parr in allowing persistence of PV-induced proliferative skin lesions for months to years, even in immunocompetent hosts.
Resumo:
Human papillomavirus type 6 (HPV6) is the major etiological agent of anogenital warts and laryngeal papillomas and has been included in both the quadrivalent and nonavalent prophylactic HPV vaccines. This study investigated the global genomic diversity of HPV6, using 724 isolates and 190 complete genomes from six continents, and the association of HPV6 genomic variants with geographical location, anatomical site of infection/disease, and gender. Initially, a 2,800-bp E5a-E5b-L1-LCR fragment was sequenced from 492/530 (92.8%) HPV6-positive samples collected for this study. Among them, 130 exhibited at least one single nucleotide polymorphism (SNP), indel, or amino acid change in the E5a-E5b-L1-LCR fragment and were sequenced in full. A global alignment and maximum likelihood tree of 190 complete HPV6 genomes (130 fully sequenced in this study and 60 obtained from sequence repositories) revealed two variant lineages, A and B, and five B sublineages: B1, B2, B3, B4, and B5. HPV6 (sub)lineage-specific SNPs and a 960-bp representative region for whole-genome-based phylogenetic clustering within the L2 open reading frame were identified. Multivariate logistic regression analysis revealed that lineage B predominated globally. Sublineage B3 was more common in Africa and North and South America, and lineage A was more common in Asia. Sublineages B1 and B3 were associated with anogenital infections, indicating a potential lesion-specific predilection of some HPV6 sublineages. Females had higher odds for infection with sublineage B3 than males. In conclusion, a global HPV6 phylogenetic analysis revealed the existence of two variant lineages and five sublineages, showing some degree of ethnogeographic, gender, and/or disease predilection in their distribution. IMPORTANCE: This study established the largest database of globally circulating HPV6 genomic variants and contributed a total of 130 new, complete HPV6 genome sequences to available sequence repositories. Two HPV6 variant lineages and five sublineages were identified and showed some degree of association with geographical location, anatomical site of infection/disease, and/or gender. We additionally identified several HPV6 lineage- and sublineage-specific SNPs to facilitate the identification of HPV6 variants and determined a representative region within the L2 gene that is suitable for HPV6 whole-genome-based phylogenetic analysis. This study complements and significantly expands the current knowledge of HPV6 genetic diversity and forms a comprehensive basis for future epidemiological, evolutionary, functional, pathogenicity, vaccination, and molecular assay development studies.
Resumo:
Bovine herpesvirus type 1 (BoHV-1) is recognized as a major cause of respiratory, reproductive disease and abortion in cattle. Vaccination is widely applied to minimize losses induced by BoHV-1 infections; however, vaccination of dams during pregnancy with modified live virus (MLV) vaccines has been occasionally associated to abortions. We have previously reported the development of a BoHV-1 recombinant virus, constructed with basis on a Brazilian BoHV-1 (Franco et al. 2002a) from which the gene coding for glycoprotein E (gE) was deleted (gE-) by genetic manipulation. Such recombinant has been previously evaluated in its potential as a differential vaccine (gE- vaccine) that allows differentiation between vaccinated and infected animals. Here, in the first part of the present study, the safety of the gE- vaccine during pregnancy was evaluated by the intramuscular inoculation of 10(7.4) tissue culture 50 % infective doses (TCID50) of the virus into 22 pregnant dams (14 BoHV-1 seronegative; 8 seropositive), at different stages of gestation. Other 15 pregnant dams were kept as non-vaccinated controls. No abortions, stillbirths or fetal abnormalities were seen after vaccination. Seroconversion was observed in both groups of previously seronegative vaccinated animals. In the second part of the study, the potential of the gE- vaccine virus to spread among beef cattle under field conditions was examined. Four heifers were inoculated intranasally with a larger amount (10(7,6) TCID50) of the gE- vaccine (to increase chances of transmission) and mixed with other sixteen animals at the same age and body condition, in the same grazing area, at a population density equal to the average cattle farming density within the region (one cattle head per 10,000 m²), for 180 days. All animals were monitored daily for clinical signs. Serum samples were collected on days 0, 30, 60 and 180 post-vaccination. Seroconversion was observed only in vaccinated heifers. These results indicate that, under the conditions of the present study, the gE- vaccine virus did not cause any noticeable harmful effect on pregnant dams and on its offspring and did not spread horizontally among cattle.
Resumo:
Venereal infection of seronegative heifers and cows with bovine herpesvirus type 1.2 (BoHV-1.2) frequently results in vulvovaginitis and transient infertility. Parenteral immunization with inactivated or modified live BoHV-1 vaccines often fails in conferring protection upon genital challenge. We herein report an evaluation of the immune response and protection conferred by genital vaccination of heifers with a glycoprotein E-deleted recombinant virus (SV265gE-). A group of six seronegative heifers was vaccinated with SV265gE- (0,2mL containing 10(6.9)TCID50) in the vulva submucosa (group IV); four heifers were vaccinated intramuscularly (group IM, 1mL containing 10(7.6)TCID50) and four heifers remained as non-vaccinated controls. Heifers vaccinated IV developed mild, transient local edema and hyperemia and shed low amounts of virus for a few days after vaccination, yet a sentinel heifer maintained in close contact did not seroconvert. Attempts to reactivate the vaccine virus in two IV vaccinated heifers by intravenous administration of dexamethasone (0.5mg/kg) at day 70 pv failed since no virus shedding, recrudescence of genital signs or seroconversion were observed. At day 70 pv, all vaccinated and control heifers were challenged by genital inoculation of a highly virulent BoHV-1.2 isolate (SV56/90, 10(7.1)TCID50/animal). After challenge, virus shedding was detected in genital secretions of control animals for 8.2 days (8-9); in the IM group for 6.2 days (4-8 days) and during 5.2 days (5-6 days) in the IV group. Control non-vaccinated heifers developed moderate (2/4) or severe (2/4) vulvovaginitis lasting 9 to 13 days (x: 10.7 days). The disease was characterized by vulvar edema, vulvo-vestibular congestion, vesicles progressing to coalescence and erosions, fibrino-necrotic plaques and fibrinopurulent exudate. IM vaccinated heifers developed mild (1/3) or moderate (3/4) genital lesions, lasting 10 to 12 days (x: 10.7 days); and IV vaccinated heifers developed mild and transient vulvovaginitis (3/4) or mild to moderate genital lesions (1/4). In the IV group, the clinical signs lasted 4 to 8 days (x: 5.5 days). Clinical examination of the animals after challenge revealed that vaccination by both routes conferred some degree of protection, yet IV vaccination was clearly more effective in reducing the severity and duration of clinical disease. Furthermore, IV vaccination reduced the period of virus shedding in comparison with both groups. Taken together, these results demonstrate that SV265gE- is sufficiently attenuated upon IV vaccination in a low-titer dosis, is not readily reactivated after corticosteroid treatment and lastly, and more importantly, confers local protection upon challenge with a high titer of a virulent heterologous BoHV-1 isolate. Therefore, the use of this recombinant for genital immunization may be considered for prevention of BoHV-1-associated genital disease in the field.
Resumo:
Tendon composition changes according to differentiation, mechanical load, and aging. In this study, we attempted to identify, localize, and quantify type VI collagen in bovine tendons. Type VI collagen was identified by the electrophoretic behavior of the alpha chains and Western blotting, and by rotary shadowing. Type VI collagen was extracted from powdered tendon with three sequential 24-h extractions with 4 M guanidine-HCl. The amount of type VI collagen was determined by enzyme-linked immunosorbent assay for purely tensional areas and for the compressive fibrocartilage regions of the deep flexor tendon of the digits, for the corresponding fetal and calf tendons, and for the extensor digital tendon. The distal fibrocartilaginous region of the adult tendon was richer in type VI collagen than the tensional area, reaching as much as 3.3 mg/g (0.33%) of the wet weight. Calf tendons showed an accumulation of type VI at the fibrocartilage site. Immunocytochemistry demonstrated that type VI collagen was evenly distributed in the tensional areas of tendons but was highly concentrated around the fibrochondrocytes in the fibrocartilages. The results demonstrate that tendons are variable with regard to the presence and distribution of type VI collagen. The early accumulation of type VI collagen in the region of calf tendon that will become fibrocartilage in the adult suggests that it is a good marker of fibrocartilage differentiation. Furthermore, the distribution of type VI collagen in tendon fibrocartilage indicates that it organizes the pericellular environment and may represent a survival factor for these cells.
Resumo:
Human herpesvirus 8 (HHV-8), also known as Kaposi's sarcoma-associated herpesvirus (KSHV), is the etiologic agent of all forms of Kaposi's sarcoma, primary effusion lymphoma and the plasmablastic cell variant of multicentric Castleman disease. In endemic areas of sub-Saharan Africa, blood transfusions have been associated with a substantial risk of HHV-8 transmission. By contrast, several studies among healthy blood donors from North America have failed to detect HHV-8 DNA in samples of seropositive individuals. In this study, using a real-time PCR assay, we investigated the presence of HHV-8 DNA in whole-blood samples of 803 HHV-8 blood donors from three Brazilian states (Sao Paulo, Amazon, Bahia) who tested positive for HHV-8 antibodies, in a previous multicenter study. HHV-8 DNA was not detected in any sample. Our findings do not support the introduction of routine HHV-8 screening among healthy blood donors in Brazil. (WC = 140).
Resumo:
Background: Persistent infection with oncogenic types of human papillomavirus (HPV) is the major risk factor for invasive cervical cancer (ICC), and non-European variants of HPV-16 are associated with an increased risk of persistence and ICC. HLA class II polymorphisms are also associated with genetic susceptibility to ICC. Our aim is to verify if these associations are influenced by HPV-16 variability. Methods: We characterized HPV-16 variants by PCR in 107 ICC cases, which were typed for HLA-DQA1, DRB1 and DQB1 genes and compared to 257 controls. We measured the magnitude of associations by logistic regression analysis. Results: European ( E), Asian-American ( AA) and African (Af) variants were identified. Here we show that inverse association between DQB1*05 ( adjusted odds ratio [ OR] = 0.66; 95% confidence interval [CI]: 0.39-1.12]) and HPV-16 positive ICC in our previous report was mostly attributable to AA variant carriers ( OR = 0.27; 95% CI: 0.10-0.75). We observed similar proportions of HLA DRB1*1302 carriers in E-P positive cases and controls, but interestingly, this allele was not found in AA cases ( p = 0.03, Fisher exact test). A positive association with DRB1*15 was observed in both groups of women harboring either E ( OR = 2.99; 95% CI: 1.13-7.86) or AA variants ( OR = 2.34; 95% CI: 1.00-5.46). There was an inverse association between DRB1*04 and ICC among women with HPV-16 carrying the 350T [83L] single nucleotide polymorphism in the E6 gene ( OR = 0.27; 95% CI: 0.08-0.96). An inverse association between DQB1*05 and cases carrying 350G (83V) variants was also found ( OR = 0.37; 95% CI: 0.15-0.89). Conclusion: Our results suggest that the association between HLA polymorphism and risk of ICC might be influenced by the distribution of HPV-16 variants.
Resumo:
To evaluate an antigen delivery system in which exogenous antigen can target the major histocompatibility complex (MHC) class I pathway, a single human papillomavirus (HPV) 16 E7 cytotoxic T lymphocyte (CTL) epitope and a single HIV gp160 CTL epitope were separately fused to the C-terminus or bovine papillomavirus 1 (BPV1) L1 sequence to form hybrid BPV1L1 VLPs. Mice immunized with these hybrid VLPs mounted strong CTL responses against the relevant target cells in the absence of any adjuvants. In addition, the CTL responses induced by immunization with BPV1L1/HPV16E7CTL VLPs protected mice against challenge with E7-transformed tumor cells. Furthermore, a high titer-specific antibody response against BPV1L1 VLPs was also induced, and this antiserum could inhibit papillomavirus-induced agglutination of mouse erythrocytes, suggesting that the antibody may recognize conformational determinates relevant to virus neutralization. These data demonstrate that hybrid BPV1L1 VLPs can be used as carriers to target antigenic epitopes to both the MHC class I and class II pathways, providing a promising strategy for the design of vaccines to prevent virus infection, with the potential to elicit therapeutic virus-specific CTL responses. (C) 1998 Academic Press.
Resumo:
Mouse monoclonal antibodies (mAbs) were raised against the major capsid protein, L1, of human papillomavirus type 16 (HPV16), produced in Escherichia coil with the expression plasmid pTrcL1. Epitope specificity could be assigned to 11 of these 12 antibodies using a series of linear peptides and fusion proteins from HPV16. One mAb (MC53) recognized a novel linear epitope that appears to be unique to the HPV16 genotype. A further 11 mAbs were characterized as recognizing novel and previously defined linear and conformational epitopes shared among more than one HPV genotype. The apparently genotype specific mAb could be useful for the development of diagnostic tests for vegetative virus infection in clinical specimens. (C) 1998 Academic Press.
Resumo:
The effect of adjuvant on induction of human papillomavirus type 16 E7 protein-specific cytotoxic T lymphocytes (CTL) and immunoglobulin G (IgG)(2a) antibody was studied in C57BL/6 J mice immunized with various adjuvants and E7 protein. Quil-A adjuvant, but not complete Freund's adjuvant (CFA) or Algammulin, induced a T-helper 1 (Th1)-type response to E7, which was characterized by CTL activity against a tumour cell line transfected with E7 protein and by E7-specific IgG(2a). All tested adjuvants elicited comparable levels of E7-specific IgG(1). The longest duration and greatest magnitude of CTL response was seen following two immunizations with the highest dose of E7 and Quil-A. Simultaneous immunization with a Th1 and a T helper 2 (Th2)-promoting adjuvant gave a Th1-type response. However, E7 and Quil-A were unable to induce a Th1-type response (as measured by the inability to generate anti-E7 IgG(2a) antibody) in animals with a pre-existing Th2-type response to E7. These results suggest that saponin adjuvants may be suitable for immunotherapy in humans where a Th1-type response is sought, provided that there is no pre existing Th2-type response to the antigen.
Resumo:
Human papillomaviruses (HPVs) are responsible for the most common human sexually transmitted viral infections. Infection with high-risk HPVs, particularly HPV16, is associated with the development of cervical cancer. The papillomavirus L1 major capsid protein, the basis of the currently marketed vaccines, self-assembles into virus-like particles (VLPs). Here, we describe the expression, purification and characterization of recombinant HPV16 L1 produced by a methylotrophic yeast. A codon-optimized HPV16 L1 gene was cloned into a non-integrative expression vector under the regulation of a methanol-inducible promoter and used to transform competent Pichia pastoris cells. Purification of L1 protein from yeast extracts was performed using heparin-sepharose chromatography, followed by a disassembly/reassembly step. VLPs could be assembled from the purified L1 protein, as demonstrated by electron microscopy. The display of conformational epitopes on the VLPs surface was confirmed by hemagglutination and hemagglutination inhibition assays and by immuno-electron microscopy. This study has implications for the development of an alternative platform for the production of a papillomavirus vaccine that could be provided by public health programs, especially in resource-poor areas, where there is a great demand for low-cost vaccines.