963 resultados para body scaled information
Resumo:
This study investigated developmental changes in the use of a contact surface during the acquisition of upright posture. Standing infants were longitudinally examined at four developmental epochs: pulling to stand (PS); standing alone (SA); walking onset (WO); and 1.5 months post-walking (PW). The results revealed that as standing experience increased the force applied to the contact surface by the hand and the body sway decreased. Applied force and body sway were consistently related in the anterior-posterior direction (r approximate to 0.65). Temporally, body sway led applied force (approximate to 45 ms) at the PS, SA, and WO developmental periods. However, at PW, the temporal relationship reversed and applied force led body sway (approximate to 140 ms). These results indicate that initially infants use surface contact for mechanical purposes but later for orientation information that affords prospective control of posture.
Resumo:
The purpose of this investigation was to determine whether the coupling between dynamic somatosensory information and body sway is similar in children and adults. Thirty children (4-, 6-, and 8-year-olds) and 10 adults stood upright, with feet parallel, and lightly contacting the fingertip to a rigid metal plate that moved rhythmically at 0.2, 0.5, and 0.8 Hz. Light touch to the moving contact surface induced postural sway in all participants. The somatosensory stimulus produced a broadband frequency response in children, while the adult response was primarily at the driving frequency. Gain, as a function of frequency, was qualitatively the same in children and adults. Phase decreased less in 4-year-olds than other age groups, suggesting a weaker coupling to position information in the sensory stimulus. Postural sway variability was larger in children than adults. These findings suggest that, even as young as age 6, children show well-developed coupling to the sensory stimulus. However, unlike adults, this coupling is not well focused at the frequency specified by the somatosensory signal. Children may be unable to uncouple from sensory information that is less relevant to the task, resulting in a broadband response in their frequency spectrum. Moreover, higher sway variability may not result from the sensory feedback process, but rather from the children's underdeveloped ability to estimate an internal model of body orientation.
Resumo:
Molecular neurobiology has provided an explanation of mechanisms supporting mental functions as learning, memory, emotion and consciousness. However, an explanatory gap remains between two levels of description: molecular mechanisms determining cellular and tissue functions, and cognitive functions. In this paper we review molecular and cellular mechanisms that determine brain activity, and then hypothetize about their relation with cognition and consciousness. The brain is conceived of as a dynamic system that exchanges information with the whole body and the environment. Three explanatory hypotheses are presented, stating that: a) brain tissue function is coordinated by macromolecules controlling ion movements, b) structured (amplitude, frequency and phase-modulated) local field potentials generated by organized ionic movement embody cognitive information patterns, and c) conscious episodes are constructed by a large-scale mechanism that uses oscillatory synchrony to integrate local field patterns. © by São Paulo State University.
Resumo:
INTRODUCTION: Regenerative therapies using biomaterials require accurate information on interactions between the implanted material and the human body. To improve the process of bone regeneration it is necessary to obtain a better understanding of the influence of the surfaces on the early stages of osseointegration. This work aims to investigate the dynamic interaction between simulated body fluid (SBF) and titanium surfaces (Ti cp) immediately after their first contact. METHODS: Ti cp samples were passed through physicochemical treatments after immersion in acid solution, alkaline solution and solutions containing TiO2 and Ca2+, to obtain three different surfaces. These were characterized by electron microscopy and free energy estimates. The evaluation of the interaction with SBF was performed by measuring the dynamic contact angles after contacting the surfaces. RESULTS: The effects of SBF wettability were more significant on surfaces according to high energy estimates. A comparative analysis of the three types of surfaces showed that fluid spreading was greater in samples with greater polar components, indicating that the surface nature influences interactions in the early stages of osseointegration. CONCLUSION: The results indicate the influence of polar interactions in the dynamic wettability of the SBF. It is possible that these interactions can also influence cellular viability on surfaces. Based on these results, new experiments are being designed to improve the presented methodology as a tool for the evaluation of biomaterials without the need for in vivo experiments.
Resumo:
The research aimed to estimate body contents of protein and energy and net requirements of energy for maintenance of buffaloes, slaughtered at different stages of maturity. There were used 14 Mediterranean intact males with initial average body weight of 352.2 +/- 24.3 kg and average age of 24 months. The animais were randomly divided into four experimental groups. One group was designed to slaughter at the beginning of the experimental period (IS). The animals of another group were restricting fed, receiving, individually, levels of protein and energy 15% above maintenance (RF). The animals of the two remaining groups were individually fed ad libitum (SW450 and SW500) to reach weights corresponding to 100 and 110 percent of the mature weight of the buffalo cows (respectively 450 and 550 kg). The ration contained ground-corn cobs, soybean meal, urea, minerals, and signal-grass (Brachiaria decumbens) hay, with a concentrate: roughage ratio of 50: 50 and 13% of crude protein on a dry matter basis. To estimate changes in body composition inside the range of weights included in the trial, linear regression equations of log protein (kg), fat (kg) and energy (Mcal) as a function of log empty-body-weight (EBW), in kg, were fitted. Energy requirements for maintenance were obtained as estimated heat production at zero level of energy intake. Buffaloes submitted to fattening in feedlot presented early body fat deposition, and had with the same live weight lower protein content and higher fat content and energy per unit weight than european-zebu crossbred cattle.
Resumo:
This study aimed at evaluating the validity, reliability, and factorial invariance of the complete (34-item) and shortened (8-item and 16-item) versions of the Body Shape Questionnaire (BSQ) when applied to Brazilian university students. A total of 739 female students with a mean age of 20.44 (standard deviation = 2.45) years participated. Confirmatory factor analysis was conducted to verify the degree to which the one-factor structure satisfies the proposal for the BSQ's expected structure. Two items of the 34-item version were excluded because they had factor weights (lambda)< 40. All models had adequate convergent validity (average variance extracted =.43-.58; composite reliability=.85-.97) and internal consistency (alpha =.85-.97). The 8-item B version was considered the best shortened BSQ version (Akaike information criterion = 84.07, Bayes information criterion = 157.75, Browne-Cudeck criterion= 84.46), with strong invariance for independent samples (Delta chi(2)lambda(7)= 5.06, Delta chi(2)Cov(8)= 5.11, Delta chi(2)Res(16) = 19.30). (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The evolution of elongated body shapes in vertebrates has intrigued biologists for decades and is particularly recurrent among squamates. Several aspects might explain how the environment influences the evolution of body elongation, but climate needs to be incorporated in this scenario to evaluate how it contributes to morphological evolution. Climatic parameters include temperature and precipitation, two variables that likely influence environmental characteristics, including soil texture and substrate coverage, which may define the selective pressures acting during the evolution of morphology. Due to development of geographic information system (GIS) techniques, these variables can now be included in evolutionary biology studies and were used in the present study to test for associations between variation in body shape and climate in the tropical lizard family Gymnophthalmidae. We first investigated how the morphological traits that define body shape are correlated in these lizards and then tested for associations between a descriptor of body elongation and climate. Our analyses revealed that the evolution of body elongation in Gymnophthalmidae involved concomitant changes in different morphological traits: trunk elongation was coupled with limb shortening and a reduction in body diameter, and the gradual variation along this axis was illustrated by less-elongated morphologies exhibiting shorter trunks and longer limbs. The variation identified in Gymnophthalmidae body shape was associated with climate, with the species from more arid environments usually being more elongated. Aridity is associated with high temperatures and low precipitation, which affect additional environmental features, including the habitat structure. This feature may influence the evolution of body shape because contrasting environments likely impose distinct demands for organismal performance in several activities, such as locomotion and thermoregulation. The present study establishes a connection between morphology and a broader natural component, climate, and introduces new questions about the spatial distribution of morphological variation among squamates.
Resumo:
Mannan-binding lectin (MBL) is an important protein of the innate immune system and protects the body against infection through opsonization and activation of the complement system on surfaces with an appropriate presentation of carbohydrate ligands. The quaternary structure of human MBL is built from oligomerization of structural units into polydisperse complexes typically with three to eight structural units, each containing three lectin domains. Insight into the connection between the structure and ligand-binding properties of these oligomers has been lacking. In this article, we present an analysis of the binding to neoglycoprotein-coated surfaces by size-fractionated human MBL oligomers studied with small-angle x-ray scattering and surface plasmon resonance spectroscopy. The MBL oligomers bound to these surfaces mainly in two modes, with dissociation constants in the micro to nanomolar order. The binding kinetics were markedly influenced by both the density of ligands and the number of ligand-binding domains in the oligomers. These findings demonstrated that the MBL-binding kinetics are critically dependent on structural characteristics on the nanometer scale, both with regard to the dimensions of the oligomer, as well as the ligand presentation on surfaces. Therefore, our work suggested that the surface binding of MBL involves recognition of patterns with dimensions on the order of 10-20 nm. The recent understanding that the surfaces of many microbes are organized with structural features on the nanometer scale suggests that these properties of MBL ligand recognition potentially constitute an important part of the pattern-recognition ability of these polyvalent oligomers. The Journal of Immunology, 2012, 188: 1292-1306.
Resumo:
Rationale and aim: This paper has the object to present the impact of nuts' and seeds' injuries withdrawing data from the Susy Safe registry, highlighting that as for other foreign bodies the main item efficiently and substantially susceptible to changes to decrease the accidents' rates is the education of adults and children, that can be shared with parents both from pediatricians and general practitioners. Indeed labeling and age related warnings have also a fundamental relevance in prevention. Methods: The present study draws its data from the Susy Safe registry. Details on injuries are entered in the Susy Safe Web-registry through a standardized case report form, that includes information regarding: children age and gender, features of the object, circumstances of injury (presence of parents and activity) and hospitalization's details (lasting, complications and removal details). Cases are prospectively collected using the Susy Safe system from 06/2005; moreover, also information regarding past consecutive cases available in each centre adhering to the project have been entered in the Susy Safe registry. Results: Nuts and seeds are one of the most common food item retrieved in foreign bodies injuries in children. In Susy Safe registry they represent the 38% in food group, and almost the 10% in general cases. Trachea, bronchi and lungs were the main location of FB's retrieval, showing an incidence of 68%. Hospitalization occurred in 83% of cases, showing the major frequency for foreign bodies located in trachea. This location was also the principal site of complications, with a frequency of 68%. There were no significant associations between these outcomes and the age class of the children. The most common complications seen (22.4%) was bronchitis, followed by pneumonia (19.7%). Adult presence was recorded as positive in 71.2% of cases, showing an association (p value 0.009) between the adult supervision and the hospitalization outcome. On the contrary there was a non significant association between adult presence and the occurrence of complications. In 80.7% of cases, the incident happened while the child was eating. Among those cases, 88.6% interested trachea, lungs and bronchi. Conclusions: Food-related aspiration injuries are common events for young children, particularly under 4 years of age, and may lead to severe complication. There is a need to study in more depth specific characteristics of foreign bodies associated with increased hazard, such as size, shape, hardness or firmness, lubricity, pliability and elasticity, in order to better identify risky foods, and more precisely described the pathogenetic pathway. Parents are not adequately conscious and aware toward this risk; therefore, the number and severity of the injuries could be reduced by educating parents and children. Information about food safety should be included in all visits to pediatricians in order to make parents able to understand, select, and identify key characteristics of hazardous foods and better control the hazard level of various foods. Finally, preventive measures including warning labels on high-risk foods could be implemented. (C) 2012 Elsevier Ireland Ltd. All rights reserved.
Resumo:
This study aims to analyse the degree of completeness of world inventory of the mite family Phytoseiidae and the factors that might determine the process of species description. The world data set includes 2,122 valid species described from 1839 to 2010. Species accumulation curves were analysed. The effect of localisation (latitude ranges) and body size on the species description patterns over space and time was assessed. A low proportion of species seems remain to be described, but this trend could be explained by a critical reduction in the number of specialists dedicated to the study of those mites. In addition, this trend refers to the areas where phytoseiids have been well studied around the world, and it may change considerably if the study of these mites would be intensified in some areas. The number of newly described species is lower near the tropics, and their body size is also smaller. Differences in body size were noted between the three sub-families of Phytoseiidae, the highest mean body lengths of adult females being observed for Amblyseiinae, the most diverse family. In the future, collections would have certainly to take into consideration such conclusions for instance in using more adequate optical equipment especially for field collections. The decrease in the number of phytoseiid mite described was confirmed and the factors that could explain such a trend are discussed. Information for improving further inventories is provided and discussed, especially in relation to sampling localization and study methods.
Resumo:
Abstract Background Recent studies have raised controversy regarding the association between cesarean section and later obesity in the offspring. The purpose of this study was to assess the association of cesarean section with increased body mass index (BMI) and obesity in school children from two Brazilian cities with distinct socioeconomic backgrounds. Methods Two birth cohorts respectively born in 1994 in Ribeirao Preto, a wealthy city in Southeast, and in 1997/98 in Sao Luis, a less wealthy city in Northeast of Brasil, were evaluated. After birth, 2,846 pairs of mothers-newborns were evaluated in Ribeirao Preto and 2,542 in Sao Luis. In 2004/05, 790 children aged 10/11 years were randomly reassessed in Ribeirao Preto and 673 at 7/9 years in Sao Luis. Information on type of delivery, maternal and child characteristics, socioeconomic position and anthropometric measurements were collected after birth and at school age. Obesity was defined as BMI ≥ 95th percentile at school age. Results Obesity rate was 13.0% in Ribeirao Preto and 2.1% in Sao Luis. Cesarean section was associated with obesity and remained significant after adjustment only in Ribeirao Preto [OR = 1.74 (95% CI: 1.04; 2.92)]. The association between cesarean section and BMI remained significant after adjustment for maternal schooling, maternal smoking during pregnancy, duration of breastfeeding, gender, birth weight and gestational age, type of school and, only in Sao Luis, pre-pregnancy maternal weight. In Ribeirao Preto children born by cesarean section had BMI 0.31 kg/m2 (95%CI: 0.11; 0.51) higher than those born by vaginal delivery. In Sao Luis BMI of children born by cesarean section was 0.28 kg/m2 higher (95%CI: 0.08; 0.49) than those born by vaginal delivery. Conclusion A positive association between cesarean section and increased BMI z-score was demonstrated in areas with different socioeconomic status in a middle-income country.
Resumo:
Exergetic analysis can provide useful information as it enables the identification of irreversible phenomena bringing about entropy generation and, therefore, exergy losses (also referred to as irreversibilities). As far as human thermal comfort is concerned, irreversibilities can be evaluated based on parameters related to both the occupant and his surroundings. As an attempt to suggest more insights for the exergetic analysis of thermal comfort, this paper calculates irreversibility rates for a sitting person wearing fairly light clothes and subjected to combinations of ambient air and mean radiant temperatures. The thermodynamic model framework relies on the so-called conceptual energy balance equation together with empirical correlations for invoked thermoregulatory heat transfer rates adapted for a clothed body. Results suggested that a minimum irreversibility rate may exist for particular combinations of the aforesaid surrounding temperatures. By separately considering the contribution of each thermoregulatory mechanism, the total irreversibility rate rendered itself more responsive to either convective or radiative clothing-influenced heat transfers, with exergy losses becoming lower if the body is able to transfer more heat (to the ambient) via convection.
Resumo:
[EN] Ammonium (NH4+) release by bacterial remineralization and heterotrophic grazers determines the regenerated fraction of phytoplankton productivity, so the measurement of NH4+ excretion in marine organisms is necessary to characterize both the magnitude and the efficiency of the nitrogen cycle. Glutamate dehydrogenase (GDH) is largely responsible for NH4+ formation in crustaceans and consequently should be useful in estimating NH4+ excretion by marine zooplankton.
Here, we address body size and starvation as sources of variability on the GDH to NH4+ excretion ratio (GDH/RNH4+). We found a strong correlation between the RNH4+ and the GDH activity (r2 = 0.87, n = 41) during growth. Since GDH activity maintained a linear relation (b = 0.93) and RNH4+ scaled exponentially (b =0.55) in well fed mysids, the GDH/RNH4+ ratio increased with size. However, the magnitude of its variation increased even more when adult mysids were starved. In this case, the GDH/RNH4+ ratio ranged from 11.23 to 102.41.