360 resultados para boats
Resumo:
This article covers the biology and the history of the bay scallop habitats and fishery from Massachusetts to North Carolina. The scallop species that ranges from Massachusetts to New York is Argopecten irradians irradians. In New Jersey, this species grades into A. i. concentricus, which then ranges from Maryland though North Carolina. Bay scallops inhabit broad, shallow bays usually containing eelgrass meadows, an important component in their habitat. Eelgrass appears to be a factor in the production of scallop larvae and also the protection of juveniles, especially, from predation. Bay scallops spawn during the warm months and live for 18–30 months. Only two generations of scallops are present at any time. The abundances of each vary widely among bays and years. Scallops were harvested along with other mollusks on a small scale by Native Americans. During most of the 1800’s, people of European descent gathered them at wading depths or from beaches where storms had washed them ashore. Scallop shells were also and continue to be commonly used in ornaments. Some fishing for bay scallops began in the 1850’s and 1860’s, when the A-frame dredge became available and markets were being developed for the large, white, tasty scallop adductor muscles, and by the 1870’s commercial-scale fishing was underway. This has always been a cold-season fishery: scallops achieve full size by late fall, and the eyes or hearts (adductor muscles) remain preserved in the cold weather while enroute by trains and trucks to city markets. The first boats used were sailing catboats and sloops in New England and New York. To a lesser extent, scallops probably were also harvested by using push nets, picking them up with scoop nets, and anchor-roading. In the 1910’s and 1920’s, the sails on catboats were replaced with gasoline engines. By the mid 1940’s, outboard motors became more available and with them the numbers of fishermen increased. The increases consisted of parttimers who took leaves of 2–4 weeks from their regular jobs to earn extra money. In the years when scallops were abundant on local beds, the fishery employed as many as 10–50% of the towns’ workforces for a month or two. As scallops are a higher-priced commodity, the fishery could bring a substantial amount of money into the local economies. Massachusetts was the leading state in scallop landings. In the early 1980’s, its annual landings averaged about 190,000 bu/yr, while New York and North Carolina each landed about 45,000 bu/yr. Landings in the other states in earlier years were much smaller than in these three states. Bay scallop landings from Massachusetts to New York have fallen sharply since 1985, when a picoplankton, termed “brown tide,” bloomed densely and killed most scallops as well as extensive meadows of eelgrass. The landings have remained low, large meadows of eelgrass have declined in size, apparently the species of phytoplankton the scallops use as food has changed in composition and in seasonal abundance, and the abundances of predators have increased. The North Carolina landings have fallen since cownose rays, Rhinoptera bonsais, became abundant and consumed most scallops every year before the fishermen could harvest them. The only areas where the scallop fishery remains consistently viable, though smaller by 60–70%, are Martha’s Vineyard, Nantucket, Mass., and inside the coastal inlets in southwestern Long Island, N.Y.
Resumo:
The northern quahog, Mercenaria mercenaria, ranges along the Atlantic Coast of North America from the Canadian Maritimes to Florida, while the southern quahog, M. campechiensis, ranges mostly from Florida to southern Mexico. The northern quahog was fished by native North Americans during prehistoric periods. They used the meats as food and the shells as scrapers and as utensils. The European colonists copied the Indians treading method, and they also used short rakes for harvesting quahogs. The Indians of southern New England and Long Island, N.Y., made wampum from quahog shells, used it for ornaments and sold it to the colonists, who, in turn, traded it to other Indians for furs. During the late 1600’s, 1700’s, and 1800’s, wampum was made in small factories for eventual trading with Indians farther west for furs. The quahoging industry has provided people in many coastal communities with a means of earning a livelihood and has given consumers a tasty, wholesome food whether eaten raw, steamed, cooked in chowders, or as stuffed quahogs. More than a dozen methods and types of gear have been used in the last two centuries for harvesting quahogs. They include treading and using various types of rakes and dredges, both of which have undergone continuous improvements in design. Modern dredges are equipped with hydraulic jets and one type has an escalator to bring the quahogs continuously to the boats. In the early 1900’s, most provinces and states established regulations to conserve and maximize yields of their quahog stocks. They include a minimum size, now almost universally a 38-mm shell width, and can include gear limitations and daily quotas. The United States produces far more quahogs than either Canada or Mexico. The leading producer in Canada is Prince Edward Island. In the United States, New York, New Jersey, and Rhode Island lead in quahog production in the north, while Virginia and North Carolina lead in the south. Connecticut and Florida were large producers in the 1990’s. The State of Tabasco leads in Mexican production. In the northeastern United States, the bays with large openings, and thus large exchanges of bay waters with ocean waters, have much larger stocks of quahogs and fisheries than bays with small openings and water exchanges. Quahog stocks in certified beds have been enhanced by transplanting stocks to them from stocks in uncertified waters and by planting seed grown in hatcheries, which grew in number from Massachusetts to Florida in the 1980’s and 1990’s.
Resumo:
The northern quahog, Mercenaria mercenaria, ranges along the Atlantic Coast of North America from the Canadian Maritimes to Florida, while the southern quahog, M. campechiensis, ranges mostly from Florida to southern Mexico. The northern quahog was fished by native North Americans during prehistoric periods. They used the meats as food and the shells as scrapers and as utensils. The European colonists copied the Indians treading method, and they also used short rakes for harvesting quahogs. The Indians of southern New England made wampum from quahog shells, used it for ornaments and sold it to the colonists, who, in turn, traded it to other Indians for furs. During the late 1600’s, 1700’s, and 1800’s, wampum was made in small factories for eventual trading with Indians farther west for furs. The quahoging industry has provided people in many coastal communities with a means of earning a livelihood and has provided consumers with a tasty, wholesome food whether eaten raw, steamed, cooked in chowders, or as stuffed quahogs. More than a dozen methods and types of gear have been used in the last two centuries for harvesting quahogs. They include treading and using various types of rakes and dredges, both of which have undergone continuous improvements in design. Modern dredges are equipped with hydraulic jets and one type has an escalator to bring the quahogs continuously to the boats. In the early 1900’s, most provinces and states established regulations to conserve and maximize yields of their quahog stocks. They include a minimum size, now almost universally a 38-mm shell width, and can include gear limitations and daily quotas. The United States produces far more quahogs than either Canada or Mexico. The leading producer in Canada is Prince Edward Island. In the United States, New York, New Jersey, and Rhode Island lead in quahog production in the north, while Virginia and North Carolina lead in the south. Connecticut and Florida were large producers in the 1990’s. The State of Campeche leads in Mexican production. In the northeastern United States, the bays with large openings, and thus large exchanges of bay waters with ocean waters, have much larger stocks of quahogs and fisheries than bays with small openings and water exchanges. Quahog stocks in certifi ed beds have been enhanced by transplanting stocks to them from stocks in uncertified waters and by planting seed grown in hatcheries, which grew in number from Massachusetts to Florida in the 1980’s and 1990’s.
Resumo:
This paper provides the first description of the mangrove cockle, Anadara spp., fisheries throughout their Latin American range along the Pacific coast from Mexico to Peru. Two species, A. tuberculosa and A. grandis, are found over the entire range, while A. similis occurs from El Salvador to Peru. Anadara tuberculosa is by far the most abundant, while A. grandis has declined in abundance during recent decades. Anadara tuberculosa and A. similis occur in level mud sediments in mangrove swamps, comprised mostly of Rhizophora mangle, which line the main-lands and islands of lagoons, whereas A. grandis inhabits intertidal mud flats along the edges of the same mangrove swamps. All harvested cockles are sexually mature. Gametogenesis of the three species occurs year round, and juvenile cockles grow rap-idly. Cockle densities at sizes at least 16–42 mm long ranged from 7 to 24/m2 in Mexico. Macrofaunal associates of cockles include crustaceans, gastropods, and finfishes. The mangrove swamps are in nearly pristine condition in every country except Honduras, Ecuador, and Peru, where shrimp farms constructed in the 1980’s and 1990’s have destroyed some mangrove zones. In addition, Hurricane Mitch destroyed some Honduran mangrove swamps in 1998. About 15,000 fishermen, including men, women, and children, harvest the cockles. Ecuador has the largest tabulated number of fishermen, 5,055, while Peru has the fewest, 75. Colombia has a large number, perhaps exceeding that in Ecuador, but a detailed census of them has never been made. The fishermen are poor and live a meager existence; they do not earn sufficient money to purchase adequate food to allow their full health and growth potential. They travel almost daily from their villages to the harvesting areas in wooden canoes and fiberglass boats at low tide when they can walk into the mangrove swamps to harvest cockles for about 4 h. Harvest rates, which vary among countries owing to differences in cockle abundances, range from about 50 cockles/fisherman/day in El Salvador and Honduras to 500–1,000/ fisherman/day in Mexico. The fishermen return to their villages and sell the cockles to dealers, who sell them mainly whole to market outlets within their countries, but there is some exporting to adjacent countries. An important food in most countries, the cockles are eaten in seviche, raw on the half-shell, and cooked with rice. The cockles are under heavy harvesting pressure, except in Mexico, but stocks are not yet being depleted because they are harvested at sizes which have already spawned. Also some spawning stocks lie within dense mangrove stands which the fishermen cannot reach. Consumers fortunately desire the largest cockles, spurning the smallest. Cockles are important to the people, and efforts to reduce the harvests to prevent overfishing would lead to severe economic suffering in the fishing communities. Pro-grams to conserve and improve cockle habitats may be the most judicious actions to take. Preserving the mangrove swamps intact, increasing their sizes where possible, and controlling cockle predators would lead to an increase in cockle abundance and harvests. Fishes that prey on juvenile cockles might be seined along the edges of swamps before the tide rises and they swim into the swamps to feed. Transplanting mangrove seedlings to suitable areas might increase the size of those habitats. The numbers of fishermen may increase in the future, because most adults now have several children. If new fishermen are tempted to harvest small, immature cockles and stocks are not increased, minimum size rules for harvestable cockles could be implemented and enforced to ensure adequate spawning.
Resumo:
An observer program of the shark drift gillnet fishery off the Atlantic coast of Florida and Georgia was begun in 1993 to define the fishery and estimate bycatch including bottlenose dolphin, Tursiops truncatus, and sea turtles. Boats in the fishery were 12.2-19.8 m long. Nets used were 275-1,800 m long and 3.2-4.1 m deep. Stretched-mesh sizes used were 12.7-29.9 cm. Fishing trips were usually <18 h and occurred within 30 n.mi. of port. Fishing with an observer aboard occurred between Savannah, Ga., and Jacksonville, Fla., and off Cape Canaveral, Fla. Nets were set at least 3 n.mi. offshore. Numbers of boats in the fishery increased from 5 in 1993 to 11 in 1995, but total trips decreased from 185 in 1994 to 149 in 1995. During 1993-95, 48 observer trips were completed and 52 net sets were observed. No marine mammals were caught and two loggerhead turtles, Caretta caretta, were caught and released alive. A total of 9,270 animals (12 shark, 21 teleost, 4 ray, and 1 sea turtle species) were captured. Blacknose, Carcharhinus acronotus; Atlantic sharpnose, Rhizoprionodon terraenovae; and blacktip shark, C. limbatus), were the dominant sharks caught. King mackerel, Scomberomorus cavalIa; little tunny, Euthynnus alleteratus; and cownose ray, Rhinoptera bonasus, were the dominant bycatch species. About 8.4% of the total catch was bycatch. Of the totals, 9.4% of the sharks and 37.3% ofthe bycatch were discarded.
Resumo:
Three surveys spanning 28 years were examined for changes in species caught by recreational fishermen from small boats (skiffs) and commercial passenger fishing vessels (CPFV's) in California's Monterey Bay region. As fishing effort increased, the catch of certain nearshore species of rockfish, Sebastes spp., declined. CPFV fishing was conducted farther from port and in deeper water to compensate for declining abundance while most skiffs remained in traditional areas close to port. The trend toward deeper water CPFV fishing has been interrupted only temporarily by increased availability of nearshore species. Life history characteristics of rockfish including residential behavior, variable recruitment, and natural longevity contribute to a vulnerability to localized overfishing for several species.
Resumo:
In addition to providing an overview of the party boat fishery in the U.S. Gulf of Mexico, a management-oriented methodology is presented that can be used elsewhere to assess regulatory impacts. Party boat operators were interviewed to determine species targeted, percent time committed to targeting each species, and opinions on current catch restrictions. Over two-thirds of the fieet was located on the west coast of Florida. Overall, most boats targeted <5 species. Four species accounted for 90 percent of the estimated effort by party boats in the U.S. Gulf of Mexico: Snapper; Lutjanus sp.; grouper, Epinephelus sp. and Mycteroperca sp.; amberjack, Seriola dumerili; and king mackerel, Scomberomorus cavalla. Party boat effort in Texas was devoted primarily to snapper, whereas in Florida most effort was devoted to snapper and grouper collectively. Party boat operators were diverse in their opinions of management regulations in force when interviewed. Results revealed why major opposition would he expected from Texas party boat operators for red snapper bag limits and other restrictions proposed by the Gulf of Mexico Fishery Management Council.
Resumo:
The charter boat industry in U. S. Gulf of Mexico provides access to offshore fishing opportunities for about 570,000 passengers per year on 971 boats. A 25% random sample of charter boat operators was interviewed during 1987-88 to determine species targeted, percent time committed to targeting each species, and reactions to existing catch restrictions. Three-fourths of the charter boat fleet was in Florida, 13% in Texas, 5% in Louisiana, 4% in Alabama, and 2% in Mississippi. Responses were diverse regarding species focus within the region. Species of dominant importance included groupers, Epinephelus sp. and Mycteroperca sp. (Fla.); snapper, Lutjanus campechanus (Ala., Fla., Miss., and La.); king mackerel, Scomberomorus cavalla (Miss., Tex., Ala. and Fla.); spotted seatrout, Cynoscion nebulosus (Tex. and La.); and red drum, Sciaenops ocellatus (Tex. and La). Catch restrictions were generally supported with higher levels of opposition to restricted high effort fish and/or one fish or closed fishery limits.
Resumo:
From May through September 1987, observations were made on 38 trips in the driftnet fishery off the Fort Pierce-Port Salerno area off southeast Florida. Of the number and weight of fish landed on observed trips, 91.6 percent consisted of king mackerel, Scomberomorus cavalla, the targeted species. Over 33 species of fishes were observed among the discarded by-catch. The most frequently occurring species in the discards was little tunny, Euthynnus alletteratus, which made up 67.0 percent by number of the discarded by-catch. Total landings for all commercial gear from Saint Lucie and Martin counties (the counties of the study area) increased 516,741 pounds from 1986 to 1987. In 1986, 55 percent of the catch was from handline and 45 percent from driftnet landings. In 1987, 78 percent was from driftnet and 22 percent from handline landings. A comparison of lengths from recreational and commercial landings showed recreationally caught fish to be, on the average, smaller. No marine mammals, birds, or turtles were entangled in the net on observed trips. Data on cost of nets. fuel, and supplies plus the distribution of earnings among the crew were obtained for five driftnet boats.
Resumo:
Em estudos ecológicos é importante entender os processos que determinam a distribuição dos organismos. O estudo da distribuição de animais com alta capacidade de locomoção é um desafio para pesquisadores em todo o mundo. Modelos de uso de habitat são ferramentas poderosas para entender as relações entre animais e o ambiente. Com o desenvolvimento dos Sistemas de Informação Geográfica (SIG ou GIS, em inglês), modelos de uso de habitat são utilizados nas análises de dados ecológicos. Entretanto, modelos de uso de habitat frequentemente sofrem com especificações inapropriadas. Especificamente, o pressuposto de independência, que é importante para modelos estatísticos, pode ser violado quando as observações são coletadas no espaço. A Autocorrelação Espacial (SAC) é um problema em estudos ecológicos e deve ser considerada e corrigida. Nesta tese, modelos generalizados lineares com autovetores espaciais foram usados para investigar o uso de habitat dos cetáceos em relação a variáveis fisiográficas, oceanográficas e antrópicas em Cabo Frio, RJ, Brasil, especificamente: baleia-de-Bryde, Balaenoptera edeni (Capítulo 1); golfinho nariz-de-garrafa, Tursiops truncatus (Capítulo 2); Misticetos e odontocetos em geral (Capítulo 3). A baleia-de-Bryde foi influenciada pela Temperatura Superficial do Mar Minima e Máxima, no qual a faixa de temperatura mais usada pela baleia condiz com a faixa de ocorrência de sardinha-verdadeira, Sardinella brasiliensis, durante a desova (22 a 28C). Para o golfinho nariz-de-garrafa o melhor modelo indicou que estes eram encontrados em Temperatura Superficial do Mar baixas, com alta variabilidade e altas concentrações de clorofila. Tanto misticetos quanto os odontocetos usam em proporções similares as áreas contidas em Unidades de Conservação (UCs) quanto as áreas não são parte de UCs. Os misticetos ocorreram com maior frequência mais afastados da costa, em baixas temperaturas superficiais do mar e com altos valores de variabilidade para a temperatura. Os odontocetos usaram duas áreas preferencialmente: as áreas com as menores profundidades dentro da área de estudo e nas maiores profundidade. Eles usaram também habitats com águas frias e com alta concentração de clorofila. Tanto os misticetos quanto os odontocetos foram encontrados com mais frequência em distâncias de até 5km das embarcações de turismo e mergulho. Identificar habitats críticos para os cetáceos é um primeiro passo crucial em direção a sua conservação
Resumo:
The Monitor National Marine Sanctuary (MNMS) was the nation’s first sanctuary, originally established in 1975 to protect the famous civil war ironclad shipwreck, the USS Monitor. Since 2008, sanctuary sponsored archeological research has branched out to include historically significant U-boats and World War II shipwrecks within the larger Graveyard of the Atlantic off the coast of North Carolina. These shipwrecks are not only important for their cultural value, but also as habitat for a wide diversity of fishes, invertebrates and algal species. Additionally, due to their unique location within an important area for biological productivity, the sanctuary and other culturally valuable shipwrecks within the Graveyard of the Atlantic are potential sites for examining community change. For this reason, from June 8-30, 2010, biological and ecological investigations were conducted at four World War II shipwrecks (Keshena, City of Atlanta, Dixie Arrow, EM Clark), as part of the MNMS 2010 Battle of the Atlantic (BOTA) research project. At each shipwreck site, fish community surveys were conducted and benthic photo-quadrats were collected to characterize the mobile conspicuous fish, smaller prey fish, and sessile invertebrate and algal communities. In addition, temperature sensors were placed at all four shipwrecks previously mentioned, as well as an additional shipwreck, the Manuela. The data, which establishes a baseline condition to use in future assessments, suggest strong differences in both the fish and benthic communities among the surveyed shipwrecks based on the oceanographic zone (depth). In order to establish these shipwrecks as sites for detecting community change it is suggested that a subset of locations across the shelf be selected and repeatedly sampled over time. In order to reduce variability within sites for both the benthic and fish communities, a significant number of surveys should be conducted at each location. This sampling strategy will account for the natural differences in community structure that exist across the shelf due to the oceanographic regime, and allow robust statistical analyses of community differences over time.
Resumo:
Bottlenose dolphins (Tursiops truncatus) inhabit estuarine waters near Charleston, South Carolina (SC) feeding, nursing and socializing. While in these waters, dolphins are exposed to multiple direct and indirect threats such as anthropogenic impacts (egs. harassment with boat traffic and entanglements in fishing gear) and environmental degradation. Bottlenose dolphins are protected under the Marine Mammal Protection Act of 1972. Over the years, the percentage of strandings in the estuaries has increased in South Carolina and, specifically, recent stranding data shows an increase in strandings occurring in Charleston, SC near areas of residential development. During the same timeframe, Charleston experienced a shift in human population towards the coastline. These two trends, rise in estuarine dolphin strandings and shift in human population, have raised questions on whether the increase in strandings is a result of more detectable strandings being reported, or a true increase in stranding events. Using GIS, the trends in strandings were compared to residential growth, boat permits, fishing permits, and dock permits in Charleston County from 1994-2009. A simple linear regression analysis was performed to determine if there were any significant relationships between strandings, boat permits, commercial fishing permits, and crabpot permits. The results of this analysis show the stranding trend moves toward Charleston Harbor and adjacent rivers over time which suggests the increase in strandings is related to the strandings becoming more detectable. The statistical analysis shows that the factors that cause human interaction strandings such as boats, commercial fishing, and crabpot line entanglements are not significantly related to strandings further supporting the hypothesis that the increase in strandings are due to increased observations on the water as human coastal population increases and are not a natural phenomenon. This study has local and potentially regional marine spatial planning implications to protect coastal natural resources, such as the bottlenose dolphin, while balancing coastal development.
Resumo:
Boat wakes in the Atlantic Intracoastal Waterway (AIWW) of North Carolina occur in environments not normally subjected to (wind) wave events, making sections of AIWW potentially vulnerable to extreme wave events generated by boat wakes. The Snow’s Cut area that links the Cape Fear River to the AIWW is an area identified by the Wilmington District of the U.S. Army Corps of Engineers as having significant erosion issues; it was hypothesized that this erosion could be being exacerbated by boat wakes. We compared the boat wakes for six combinations of boat length and speed with the top 5% wind events. We also computed the benthic shear stress associated with boat wakes and whether sediment would move (erode) under those conditions. Finally, we compared the transit time across Snow’s Cut for each speed. We focused on two size classes of V-hulled boats (7 and 16m) representative of AIWW traffic and on three boat speeds (3, 10 and 20 knots). We found that at 10 knots when the boat was plowing and not yet on plane, boat wake height and potential erosion was greatest. Wakes and forecast erosion were slightly mitigated at higher, planing speeds. Vessel speeds greater than 7 knots were forecast to generate wakes and sediment movement zones greatly exceeding that arising from natural wind events. We posit that vessels larger than 7m in length transiting Snow’s Cut (and likely many other fetch-restricted areas of the AIWW) frequently generate wakes of heights that result in sediment movement over large extents of the AIWW nearshore area, substantially in exceedance of natural wind wave events. If the speed, particularly of large V-hulled vessels (here represented by the 16m length class), were reduced to pre-plowing levels (~ 7 knots down from 20), transit times for Snow’s Cut would be increased approximately 10 minutes but based on our simulations would likely substantially reduce the creation of erosion-generating boat wakes. It is likely that boat wakes significantly exceed wind wave background for much of the AIWW and similar analyses may be useful in identifying management options.
Resumo:
Karnataka, one of the maritime states on the west coast of India, has progressed quite well in marine fisheries due to its vast fisheries resources and diversification in mechanised fishing. Mechanisation programmes were started by the state from 1957-58 only. Starting with two small mechanised boats, the state has today a fishing fleet of 398 purseseiners, 731 gillnetters, 2 deepsea trawlers and about 1,500 shrimp trawlers contributing over 85% of the total marine fish landings. The marine fish production during 1987-88 up to the end of March 1988 was 1,29,659 tonnes valued at Rs.48.05 crores.
Resumo:
The coastal area of approximately 2000 km and the water-bodies in between the Andaman and Nicobar islands are rich in fishery potential which range from 0.012-0.47 million tonnes. The fishery is dominated by catches of sardines, perches, carangids, mackerels, Leiognathus elasmobranchs, seerfish, mullets and tunas. About 2050 fishermen, with 1150 country craft, 113 mechanised boats and 1367 different kinds of nets and lines are engaged in active fishing in the island. Numerous bays, lagoons and creeks are available among the group of islands for mariculture activities. The mangroves of these islands provide feeding and nursery grounds for juveniles of penaeid prawns, crabs and finfishes.