124 resultados para biologis-kemiallinen puhdistus
Resumo:
Uudenmaan vesienhoidon toimenpideohjelma sisältää tiedot vesien tilasta sekä tarvittavat toimenpiteet pinta- ja pohjavesien tilan parantamiseksi ja ylläpitämiseksi vesienhoitokaudella 2016 – 2021. Pintavesien ekologinen tila on heikko erityisesti peltovaltaisilla valuma-alueilla ja Suomenlahden rannikkovesissä. Jokien tilaa heikentää erityisesti hajakuormituksen aiheuttama rehevöityminen, mutta myös jokien rakentaminen, säännöstely ja patoaminen. Uudenmaan pintavesien kemiallinen tila on arvioitu suurelta osin hyväksi. Hyvää huonompi kemiallinen tila johtuu pääasiassa ym-päristölaatunormin ylittävistä elohopeapitoisuuksista ahvenessa. Uudellamaalla on 21 pohjavesialuetta, jotka on määritelty kemiallisesti huonoon tilaan. Yleisimpiä syitä kemiallisen tilan heikkenemiseen ovat pohjaveden kloridipitoisuus, liuottimet, torjunta-aineet sekä bensiinin lisäaine MTBE. Toimenpideohjelmassa esitettyjen toimenpiteiden kokonaiskustannukset ovat 372 milj. euroa vuodessa. Tästä 351 milj. euroa on muun lainsäädännön perusteella toteutettavia perus- ja muita perustoimenpiteitä ja 20 milj. euroa vesienhoidon täydentäviä toimen-piteitä. Toimenpiteiden toteutusta edistämään on esitetty lainsäädännöllisiä, taloudellisia, hallinnollisia ja tiedollisia ohjauskeinoja, joille on määritelty toteutusvastuut ja yhteistyötahot.
Resumo:
Vesienhoidon tavoitteena on saada pinta- ja pohjavedet vähintään hyvään tilaan ja estää hyvälaatuisten vesien tilan heikkeneminen. Tavoitteiden saavuttamiseksi on laadittu vesienhoitosuunnitelmat ja niiden tausta-aineistona olevat yksityiskohtaisemmat toimenpideohjelmat. Keski-Suomen vesienhoidon toimenpideohjelma vuosille 2016–2021 tarkentaa Kymijoen-Suomenlahden ja Kokemäenjoen-Saaristomeren-Selkämeren-vesienhoitosuunnitelmia Keski-Suomen osalta. Toimenpideohjelmassa on kuvattu Keski-Suomen pinta- ja pohjavesien nykytila, vesiä muuttavat tekijät, vesien parantamistarpeet sekä esitetty tarvittavat toimenpiteet vesien tilan parantamiseksi ja ylläpitämiseksi. Toimenpideohjelmassa on arvioitu yli 460 pintavesimuodostuman tila sekä 45 pohjavesialueen pohjaveden tila. Maakunnan luokiteltujen järvien pinta-alasta 22 % on erinomaisia, 71 % hyviä ja 7 % alle hyvän tilan. Luokiteltujen jokien pituudesta 7 % on erinomaisia, 41 % hyviä ja 52 % alle hyvän tilan. Ekologista tilaa heikentää erityisesti hajakuormitus, joka on pääosin peräisin maa-ja metsätaloudesta ja haja-asutuksesta. Paikoitellen myös pistekuormitus heikentää vesientilaa. Joet ovat järviä huonommassa tilassa muun muassa ihmistoiminnan aiheuttamien rakenteellisten ja hydrologisten muutosten vuoksi. Hyvässä kemiallisessa tilassa on 40 % järvipinta-alasta ja 41 % jokipituudesta. Huono kemiallinen tila johtuu kalojen elohopeasta, jonka on arvioitu olevan peräisin pääosin ilman kautta tulevasta laskeumasta. Maakunnassa on luokiteltu 239 I ja II luokan pohjavesialuetta. Pohjaveden kemiallista tai määrällistä tilaa uhkaavaa toimintaa on arvioitu olevan 45 pohjavesialueella. Näistä riskinalaisiksi on todettu 28 pohjavesialuetta, joista huonotilaisiksi on arvioitu 24 ja hyvätilaisiksi 4. Kaikilla huonotilaisilla pohjavesialueilla huonon tilan aiheuttaa pohjaveden kemiallinen tila. Teollisuus- ja yritystoiminta ja näiden synnyttämät pilaantuneet alueet, liikenne ja tienpito sekä maatalous aiheuttavat merkittävimmät uhkat pohjavedelle. Lisäselvityksiä riskinalaisuudesta ja tilasta on tarpeen tehdä 17 pohjavesialueella Maa- ja metsätalouden vesienhoitotoimenpiteillä pyritään erityisesti ravinne- ja kiintoainekuormituksen vähentämiseen. Esimerkiksi maatalouden suojavyöhykkeitä ja kosteikkoja on esitetty nyt selvästi enemmän kuin 1. kaudella. Kunnostusojituksen vesiensuojelua tehostetaan perusvesiensuojelutason lisäksi muun muassa putkipadoilla ja vanhojen ojitusten aiheuttamia eroosiohaittoja torjutaan erillishankkeiden kautta. Pistekuormituksen vähentämiskesi esitetään muun muassa kahdeksan jätevedenpuhdistamon perusparantamista sekä turvetuotannon vesiensuojelua tehostetaan viidesosalla olemassa olevasta turvetuotantopinta-alasta. Vesistöjen rakentamiseen, säännöstelyyn ja kunnostukseen liittyviä toimenpiteitä on esitetty yhteensä 22 jokimuodostumalle ja 14 järvelle.. Pohjavesialueilla keskeisiä vesienhoitotoimenpiteitä ovat erityisesti pilaantuneiden alueiden kunnostukset, teiden talvisuolauksen vähentäminen ja suolaa vähemmän haitallisen aineen käyttöönotto sekä pohjavesisuojausten rakentaminen liikennealleille ja -väylille. Toimenpideohjelma on valmisteltu yhteistyössä vesienhoidon yhteistyöryhmän kanssa. Kansalaisia, viranomaisia ja sidosryhmiä on kuultu useissa suunnittelun eri vaiheissa
Resumo:
Yhdistepuolijohde galliumnitridi (GaN) on energiatehokkaiden valkoisten ledien päämateriaali. GaN on kestävä materiaali; sillä on muun muassa alhainen säteilyreagointi ja suuri jännitekestävyys, minkä vuoksi GaN soveltuu hyvin myös maanpuolustus- ja avaruussovelluksiin. Sen iso energia-aukko mahdollistaa materiaalin käytön suurteho- ja suurtaajuussovelluksissa, ja sen suuri lämpökapasiteetti ja lämmönjohtavuuskyky avaavat edelleen uusia mahdollisuuksia materiaalin käytölle muun muassa tehovahvistimissa mikroaaltotaajuudella. GaN:ä käytetään myös sinisten ja violettien ledien valmistuksessa. Kun yhdisteeseen lisätään alumiinia, saadaan alumiinigalliumnitridin (AlGaN) energia-aukkoa ja muita ominaisuuksia säädeltyä alumiinin määrää muuttamalla. AlGaN-pintojen ominaisuuksia on tutkittu suhteellisen vähän, vaikka niiden merkitys kasvaa jatkuvasti kehitettäessä nanoteknologian sovelluksia. AlGaN-pintojen tutkiminen on tärkeää, koska monissa sovelluksissa juuri pinnat ja rajapinnat ovat huomattavassa asemassa laitteiden toiminnan kannalta. Pinnoilla sijaitseva atomien epäjärjestys, kidevirheet ja epäpuhtausatomit sekä atomien kemiallinen sidosympäristö kiinnostavat tutkijoita. Myös erilaisten pintakäsittelyjen vaikutusten tunteminen edellä mainittuihin ominaisuuksiin on tärkeää hyvien pintojen valmistuksen saavuttamiseksi. Tämän pro gradu -tutkielman on tarkoitus tutustua III–V-puolijohteiden GaN:n ja AlGaN:n pintaominaisuuksiin ja niiden muokkaukseen materiaalifysiikan pintatieteen menetelmillä. Mg-piristeisille Al0,5Ga0,5N-näytteille tehdyt LEED- ja STM-mittaukset osoittavat, että AlGaN-pinnat tarjoavat hyvän lähtökohdan bulkille tyypillisten ominaisuuksien tutkimiseen. XPS- ja SR-PES-mittaukset osoittavat, että Mg-piristys vaikuttaa aktivoituvan noin 700 °C:n lämmityksessä, ja näytteet sisältävät aiemmissa tutkimuksissa havaitun vedyn lisäksi happea ja hiiltä, jotka vaikuttavat magnesiumin aktivoitumiseen ja siitä syntyvään aukkokonsentraatioon. LEED-, STM- ja resistiivisyysmittaukset tukevat tehtyjä XPS- ja SR-PES-mittauksia. Al0,5Ga0,5N-näytteen energia-aukossa sijaitsevien aktiivisten vastaanottajatilojen määritettiin sijaitsevan 200–600 meV valenssivyön maksimin yläpuolella riippuen jälkilämmityksen kestosta.
Resumo:
Methanol is an important and versatile compound with various uses as a fuel and a feedstock chemical. Methanol is also a potential chemical energy carrier. Due to the fluctuating nature of renewable energy sources such as wind or solar, storage of energy is required to balance the varying supply and demand. Excess electrical energy generated at peak periods can be stored by using the energy in the production of chemical compounds. The conventional industrial production of methanol is based on the gas-phase synthesis from synthesis gas generated from fossil sources, primarily natural gas. Methanol can also be produced by hydrogenation of CO2. The production of methanol from CO2 captured from emission sources or even directly from the atmosphere would allow sustainable production based on a nearly limitless carbon source, while helping to reduce the increasing CO2 concentration in the atmosphere. Hydrogen for synthesis can be produced by electrolysis of water utilizing renewable electricity. A new liquid-phase methanol synthesis process has been proposed. In this process, a conventional methanol synthesis catalyst is mixed in suspension with a liquid alcohol solvent. The alcohol acts as a catalytic solvent by enabling a new reaction route, potentially allowing the synthesis of methanol at lower temperatures and pressures compared to conventional processes. For this thesis, the alcohol promoted liquid phase methanol synthesis process was tested at laboratory scale. Batch and semibatch reaction experiments were performed in an autoclave reactor, using a conventional Cu/ZnO catalyst and ethanol and 2-butanol as the alcoholic solvents. Experiments were performed at the pressure range of 30-60 bar and at temperatures of 160-200 °C. The productivity of methanol was found to increase with increasing pressure and temperature. In the studied process conditions a maximum volumetric productivity of 1.9 g of methanol per liter of solvent per hour was obtained, while the maximum catalyst specific productivity was found to be 40.2 g of methanol per kg of catalyst per hour. The productivity values are low compared to both industrial synthesis and to gas-phase synthesis from CO2. However, the reaction temperatures and pressures employed were lower compared to gas-phase processes. While the productivity is not high enough for large-scale industrial operation, the milder reaction conditions and simple operation could prove useful for small-scale operations. Finally, a preliminary design for an alcohol promoted, liquid-phase methanol synthesis process was created using the data obtained from the experiments. The demonstration scale process was scaled to an electrolyzer unit producing 1 Nm3 of hydrogen per hour. This Master’s thesis is closely connected to LUT REFLEX-platform.