971 resultados para biochemical weapons
Resumo:
The characterisation of the gene encoding Trypanosoma cruzi CL Brener phosphofructokinase (PFK) and the biochemical properties of the expressed enzyme are reported here. In contradiction with previous reports, the PFK genes of CL Brener and YBM strain T. cruzi were found to be similar to their Leishmania mexicana and Trypanosoma brucei homologs in terms of both kinetic properties and size, with open reading frames encoding polypeptides with a deduced molecular mass of 53,483. The predicted amino acid sequence contains the C-terminal glycosome-targeting tripeptide SKL; this localisation was confirmed by immunofluorescence assays. In sequence comparisons with the genes of other eukaryotes, it was found that, despite being an adenosine triphosphate-dependent enzyme, T. cruzi PFK shows significant sequence similarity with inorganic pyrophosphate-dependent PFKs.
Resumo:
The vitellogenic process in Culex quinquefasciatus, which is triggered by a blood meal, involves the synthesis, distribution and storage of the nutrients necessary for embryo development. The fat body of an adult female Cx. quinquefasciatus revealed two cell types: large trophocytes and small, eosinophilic, "oenocyte-like" cells, which show no morphological changes throughout the gonotrophic cycle. Trophocytes, which only begin to synthesise vitellogenin (Vg) 12 h post-blood meal (PBM), undergo a series of morphological changes following engorgement. These changes include the expansion of the rough endoplasmic reticulum (RER) and Golgi complex, which are later destroyed by autophagosomes. At 84 h PBM, trophocytes return to their pre-engorgement morphology. The ovarian follicles of non-blood-fed Cx. quinquefasciatus contain a cluster of eight undifferentiated cells surrounded by follicular epithelium. After engorgement, the oocyte membrane facing the perioocytic space increases its absorptive surface by microvilli development; large amounts of Vg and lipids are stored between 24 and 48 h PBM. Along with yolk storage in the oocyte, follicular cells exhibit the development of RER cisternae and electron-dense granules begin to fill the perioocytic space, possibly giving rise to endochorion. Later in the gonotrophic cycle, electron-dense vesicles, which are possible exochorion precursors, fuse at the apical membrane of follicular cells. This fusion is followed by follicular cell degeneration.
Resumo:
Thirty-eight strains of Shiga toxin-producing Escherichia coli (STEC) were characterised in terms of biochemical properties, enterohaemolysin production and plasmid carriage. A wide variation in the biochemical properties was observed among the STEC, with 14 distinct biotypes identified. Biotype 1 was the most common, found in 29% of the strains. Enterohaemolysin production was detected in 29% of the strains. Most of the bacterial strains (95%) carried one or more plasmids and considerable heterogeneity in size and combinations was observed. Seven distinct plasmid profiles were identified. The most common profile, characterised by the presence of a single plasmid of ~90 kb, was found in 50% of these strains. These data indicate extensive diversity among STEC strains. No correlation was found among biotype, serotype, enterohaemolysin production and plasmid profile.
Resumo:
We examined strains of Trypanosoma cruzi isolated from patients with acute Chagas disease that had been acquired by oral transmission in the state of Santa Catarina, Brazil (2005) and two isolates that had been obtained from a marsupial (Didelphis aurita) and a vector (Triatoma tibiamaculata). These strains were characterised through their biological behaviour and isoenzymic profiles and genotyped according to the new Taxonomy Consensus (2009) based on the discrete typing unities, that is, T. cruzi genotypes I-VI. All strains exhibited the biological behaviour of biodeme type II. In six isolates, late peaks of parasitaemia, beyond the 20th day, suggested a double infection with biodemes II + III. Isoenzymes revealed Z2 or mixed Z1 and Z2 profiles. Genotyping was performed using three polymorphic genes (cytochrome oxidase II, spliced leader intergenic region and 24Sα rRNA) and the restriction fragment length polymorphism of the kDNA minicircles. Based on these markers, all but four isolates were characterised as T. cruzi II genotypes. Four mixed populations were identified: SC90, SC93 and SC97 (T. cruzi I + T. cruzi II) and SC95 (T. cruzi I + T. cruzi VI). Comparison of the results obtained by different methods was essential for the correct identification of the mixed populations and major lineages involved indicating that characterisation by different methods can provide new insights into the relationship between phenotypic and genotypic aspects of parasite behaviour.
Resumo:
Résumé Les télomères sont les structures ADN-protéines des extrémités des chromosomes des eucaryotes. L'ADN télomérique est constitué de courtes séquences répétitives. L'intégrité des télomères est essentielle pour protéger les extrémités des chromosomes contre les systèmes de dégradations et pour les distinguer des cassures de l'ADN double brin. Parce que la machinerie de la réplication de l'ADN n'est pas capable de répliquer l'extrémité des chromosomes, les télomères raccourcissent au fur et à mesure des cycles de réplication. Dès que les télomères atteignent une longueur critique, leur structure protectrice est perdue. Cela induit un signal de dommage de l'ADN et l'arrêt du cycle cellulaire. Pour contrebalancer le raccourcissement des télomères, les cellules qui s'auto régénèrent, dont les cellules de la moelle osseuse, les lymphocytes activés et 80-90% des cellules cancéreuses, expriment la télomérase. C'est une ribonucléoprotéine qui a la capacité de synthétiser des séquences télomériques par transcription inverse d'une courte séquence contenue dans sa propre sous-unité ARN avec laquelle elle est associée. La télomérase humaine est une enzyme processive au niveau de l'addition des nucléotides et aussi des répétitions télomériques. La télomérase de levure et la télomérase humaine sont toutes deux dimériques et il a été montré que la télomérase humaine recombinante contient deux ARN qui coopèrent pour fonctionner ainsi que deux sous-unités catalytiques. Cependant, il n'a pas encore été montré quel est le rôle de la dimérisation dans l'activité de la télomérase. Afin d'élucider ce rôle, nous avons exprimé, reconstitué et purifié la télomérase humaine dimérique recombinante. Et pour étudier l'effet d'ARN mutants sur l'activité de la télomérase, nous avons développé une méthode pour reconstituer et enrichir en hétérodimères de télomérase. Les hétérodimères contiennent une sous-unité ARN sauvage et une sous-unité ARN mutée au niveau de la séquence de la matrice. Sur l'ARN muté nous avons introduit une étiquette aptamer ARN-S1 puis nous avons purifié la télomérase via l'etiquette Si. Nous avons montré que la dimérisation est essentielle pour l'activité de la télomérase. Nos données indiquent que chaque télomérase du dimère allonge leur substrat, l'ADN télomérique, indépendamment l'une de l'autre à chaque cycle d'élongation mais que l'addition itérative de répétitions télomériques nécessite une coopération entre les deux télomérases du dimère. Nous proposons donc un modèle dans lequel les deux télomérases du dimères se lient et allongent deux substrats télomères et que pendant l'élongation processive les deux enzymes subissent un changement de conformation de manière coordonnée, ce changement va permettre le repositionnement des substrats pour d'autres cycles d'additions de répétitions télomériques. Dyskeratosis congenita est une maladie mortelle due majoritairement au disfonctionnement de la moelle osseuse. Dans la forme autosomale de la maladie, l'ARN de la télomérase contient des mutations. En utilisant notre système de reconstitution, nous avons montré que ces ARN mutés, qui ont perdu leur activité enzymatique dans le cas d'un homodimère de mutants, sont dominant négatifs quand ils sont présents dans les hétérodimères sauvage/mutant. Cet effet trans-dominant négatif pourrait contribuer à la progression de la maladie. Abstract Telomeres are protein-DNA structures at the ends of linear eukaryotic chromosomes. The telomeric DNA consists of tandemly repeated sequences. Telomeric integrity is essential to protect chromosomal ends from nucleolytic degradation and to prevent their recognition as DNA double strand breaks. Due to the inability of the conventional DNA replication machinery to replicate terminal DNA stretches, telomeres shorten with continuous rounds of DNA replication. As soon as telomeres reach a critical length, their protective structure is lost and the deprotected telomeres will induce a DNA damage response leading to cell cycle arrest. To counteract telomere shortening, self-renewing cells, including bone marrow cells, activated lymphocytes and 80-90% of cancer cells express the cellular reverse transcriptase telomerase, which has the capacity to synthesize telomeric repeats by reverse transcription of a short template sequence encoded by its stably associated RNA subunit. Human telomerase is a processive enzyme for nucleotide as well as repeat addition. Both yeast and human telomerase are dimeric enzymes and recombinant human telomerase has been shown to contain two functionally cooperating RNAs and most probably also two protein subunits. However, it has remained unclear how dimerization may contribute to telomerase activity. To study the role of dimerization, we expressed, reconstituted and purified recombinant human telomerase. We also developed a new method to reconstitute and enrich for telomerase heterodimers containing wild-type (wt) and mutant telomerase RNA subunits. To this end we introduced an S1-RNA-aptamer tag into telomerase RNA and purified telomerase reconstituted with a mixture of untagged and tagged RNA via the S1-tag. Using this experimental system, we introduced template mutations in the tagged RNA subunit and examined the effect of mutant RNAs on wt telomerase activity in wt/mutant heterodimers. We obtained evidence that dimerization is essential for telomerase activity. Our data indicate that the two subunits elongate telomere substrates independently of each other during single rounds of elongation, but that iterative addition of telomeric repeats requires cooperation between the two subunits. We suggest a model, in which dimeric telomerases bind and elongate two telomere substrates and that the two subunits undergo coordinated conformational changes during processive elongation that enable repositioning the substrates for subsequent rounds of repeat addition. Dyskeratosis congenita is a multisystemic disease with bone marrow failure as the major cause of death. The autosomal form of this disease was found to harbor mutations in the telomerase RNA. Using our reconstitution system, we tested whether mutant dyskeratosis telomerase RNAs behaved in a dominant negative manner. We observed that dyskeratosis telomerase RNA mutants, which lacked enzymatic activity were dominant negative, when present in wt/ mutant heterodimers. The transdominant negative effect of these mutants may contribute to disease progression.
Resumo:
To increase our knowledge of the natural susceptibility of Triatoma infestans to an organophosphate insecticide, we performed toxicological and biochemical studies on three sylvatic populations from Bolivia and two populations from domestic dwellings from Bolivia and Argentina. Fifty-per-cent lethal doses (LD50) were determined based on the topical application of fenitrothion on first instar nymphs and mortality was assessed at 24 h. Both type of populations exhibited LD50ratios significantly higher than 1 with a range of the values (1.42-2.47); the maximum value were found in a sylvatic (-S) population, Veinte de Octubre-S. Samples were biochemically analysed using a glutathione S-transferase activity assay. The highest significant activity was obtained for Veinte de Octubre-S and the lowest activity was obtained for the reference population (102.69 and 54.23 pmol per minute per mg of protein respectively). Two out of the three sylvatic populations (Veinte de Octubre-S and Kirus Mayu-S) exhibited significantly higher glutathione S-transferase activity than that of the reference population. Based on this analysis of the natural susceptibility of this organism to organophosphate insecticides, continental and focal surveys of organophosphate susceptibility should be conducted to evaluate the evolution and distribution of this phenomenon.
Resumo:
Lipophorin (Lp) is the main haemolymphatic lipoprotein in insects and transports lipids between different organs. In adult females, lipophorin delivers lipids to growing oocytes. In this study, the interaction of this lipoprotein with the ovaries of Rhodnius prolixus was characterised using an oocyte membrane preparation and purified radiolabelled Lp (125I-Lp). Lp-specific binding to the oocyte membrane reached equilibrium after 40-60 min and when 125I-Lp was incubated with increasing amounts of membrane protein, corresponding increases in Lp binding were observed. The specific binding of Lp to the membrane preparation was a saturable process, with a Kdof 7.1 ± 0.9 x 10-8M and a maximal binding capacity of 430 ± 40 ng 125I-Lp/µg of membrane protein. The binding was calcium independent and pH sensitive, reaching its maximum at pH 5.2-5.7. Suramin inhibited the binding interaction between Lp and the oocyte membranes, which was completely abolished at 0.5 mM suramin. The oocyte membrane preparation from R. prolixus also showed binding to Lp from Manduca sexta. When Lp was fluorescently labelled and injected into vitellogenic females, the level of Lp-oocyte binding was much higher in females that were fed whole blood than in those fed blood plasma.
Resumo:
Plants possess a family of potent fatty acid-derived wound-response and developmental regulators: the jasmonates. These compounds are derived from the tri-unsaturated fatty acids alpha-linolenic acid (18:3) and, in plants such as Arabidopsis thaliana and tomato, 7(Z)-, 10(Z)-, and 13(Z)-hexadecatrienoic acid (16:3). The lipoxygenase-catalyzed addition of molecular oxygen to alpha-linolenic acid initiates jasmonate synthesis by providing a 13-hydroperoxide substrate for formation of an unstable allene oxide by allene oxide synthase (AOS). This allene oxide then undergoes enzyme-guided cyclization to produce 12-oxophytodienoic acid (OPDA). These first steps take place in plastids, but further OPDA metabolism occurs in peroxisomes. OPDA has several fates, including esterification into plastid lipids and transformation into the 12-carbon prohormone jasmonic acid (JA). JA is itself a substrate for further diverse modifications, including the production of jasmonoyl-isoleucine (JA-Ile), which is a major biologically active jasmonate among a growing number of jasmonate derivatives. Each new jasmonate family member that is discovered provides another key to understanding the fine control of gene expression in immune responses; in the initiation and maintenance of long-distance signal transfer in response to wounding; in the regulation of fertility; and in the turnover, inactivation, and sequestration of jasmonates, among other processes.
Resumo:
Among pollutants released into the environment by human activities, residues of pharmaceuticals are an increasing matter of concern because of their potential impact on ecosystems. The aim of this study was to analyze differences of protein expression resulting from acute (2 days) and middle-term (7 days) exposure of aquatic microcrustacean Daphnia pulex to the anticancer drug tamoxifen. Using a liquid chromatography-mass spectrometry shotgun approach, about 4000 proteins could be identified, providing the largest proteomics data set of D. pulex published up to now. Considering both time points and tested concentrations, 189 proteins showed a significant fold change. The identity of regulated proteins suggested a decrease in translation, an increase in protein degradation and changes in carbohydrate and lipid metabolism as the major effects of the drug. Besides these impacted processes, which reflect a general stress response of the organism, some other regulated proteins play a role in Daphnia reproduction. These latter results are in accordance with our previous observations of the impact of tamoxifen on D. pulex reproduction and illustrate the potential of ecotoxicoproteomics to unravel links between xenobiotic effects at the biochemical and organismal levels. Data are available via ProteomeXchange with identifier PXD001257.
Resumo:
The aim of this study was to investigate the usefulness of postmortem biochemical investigations in the diagnosis of fatal hypothermia. 10 cases of fatal hypothermia and 30 control cases were selected. A series of biochemical parameters, such as glucose, acetone, 3-beta-hydroxybutyrate, isopropyl alcohol, free fatty acids, adrenaline, growth hormone, adrenocorticotropic hormone, thyroid-stimulating hormone, cortisol, calcium, magnesium, C-reactive protein, procalcitonin as well as markers of renal and cardiac functions were measured in blood, postmortem serum from femoral blood, urine, vitreous and pericardial fluid. The results suggested that deaths due to hypothermia, especially in free-ethanol cases, are characterized by increased ketone levels in blood and other biological fluids, increased adrenaline concentrations in urine, increased cortisol levels in postmortem serum from femoral blood and increased free cortisol values in urine. Increased or decreased levels of other biological parameters are either the result of terminal metabolic changes or the expression of preexisting diseases and may provide information to elucidate the death process on a case-by-case basis.
Resumo:
Background: Neuroblastoma is a paediatrictumour derived from the neural crest. Biochemical diagnosis and follow up rely on quantitation of urinary catecholamines (dopamine and noradrenaline) and their metabolites vanillylmandelic acid (VMA) and homovanillic acid (HVA) (gold-standard). When combined, these analyses have a sensitivity of 95%. However, they are clearly limited by inaccuracy of urine collection in young children and normalisation of catecholamine concentrations by creatininuria. Recent development in biochemical diagnosis of pheochromocytoma, another neural crest tumour found in adults, shows that plasmatic measurement of methoxylated catecholamines called metanephrines are more sensitive and specific than other biomarkers. Moreover, a study to determine the reference intervals for metanephrines in a pediatric population has recently been completed. The aim of this work is to describe the role of metanephrines monitoring in the follow up of neuroblastoma. Method: This retrospective study included patients with neuroblastoma in whom the following parameters were determined: plasma free and total metanephrines, plasma catecholamines, 24h urinary catecholamines and metanephrines in absolute value and corrected by creatinine, VMA and HVA at the diagnosis and during treatment at the University Hospital of Lausanne (Switzerland). Eleven patients aged between the first day of life and 7 years old were followed between 2005 and 2012. Clinical outcome and biochemical concentrations of the analytes were correlated. Results: At diagnosis, plasma free and total normetanephrines and methoxytyramine have a sensitivity of 100% compared to 85% for the actual gold standard. Metanephrine remain below the upper reference limit as expected since these tumours do not produce adrenaline. The relationship between biochemical markers and clinical outcome is illustrated graphically. Plasma or urinary normetanephrine and methoxytyramine correlate better with the history of the patient than VMA and HVA, as evaluated by ordinal logistic regression. Concentrations of analytes in urine show a better correlation with clinical events when the results are corrected by creatininuria. Conclusion: Normetanephrine and methoxytyramine reflect disease history in neuroblastoma patients and could play a significant role in the follow up of this type of tumour. Formal studies in a sufficient number of patients are needed to confirm this preliminary observation.
Resumo:
BAFF is a B cell survival factor that binds to three receptors BAFF-R, TACI and BCMA. BAFF-R is the receptor triggering naïve B cell survival and maturation while BCMA supports the survival of plasma cells in the bone marrow. Excessive BAFF production leads to autoimmunity, presumably as the consequence of inappropriate survival of self-reactive B cells. The function of TACI has been more elusive with TACI(-/-) mice revealing two sides of this receptor, a positive one driving T cell-independent immune responses and a negative one down-regulating B cell activation and expansion. Recent work has revealed that the regulation of TACI expression is intimately linked to the activation of innate receptors on B cells and that TACI signalling in response to multimeric BAFF and APRIL provides positive signals to plasmablasts. How TACI negatively regulates B cells remains elusive but may involve an indirect control of BAFF levels. The discovery of TACI mutations associated with common variable immunodeficiency (CVID) in humans not only reinforces its important role for humoral responses but also suggests a more complex role than first anticipated from knockout animals. TACI is emerging as an unusual TNF receptor-like molecule with a sophisticated mode of action.
Resumo:
Plants possess an interrelated family of potent fatty acid-derived regulators-the jasmonates. These compounds, which play roles in both defense and development, are derived from tri-unsaturated fatty acids [alpha-linolenic acid (18:3) or 7Z,10Z,13Z-hexadecatrienoic acid (16:3)]. The lipoxygenase-catalyzed addition of molecular oxygen to alpha-linolenic acid initiates jasmonate synthesis by providing a 13-hydroperoxide substrate for the formation of an unstable allene oxide that is then subject to enzyme-guided cyclization to produce 12-oxo-phytodienoic acid (OPDA). OPDA has several fates, including esterification into plastid lipids or transformation into the 12-carbon co-regulator jasmonic acid (JA). JA, the best-characterized member of the family, regulates both male and female fertility (depending on the plant species) and is an important mediator of defense gene expression. JA is itself a substrate for further diverse modifications. Genetic dissection of the pathway is revealing how the different jasmonates modulate different physiological processes. Each new family member that is discovered provides another key to understanding the fine control of gene expression in immune responses, in the initiation and maintenance of long-distance signal transfer in response to wounding, in the regulation of fertility, and in the turnover, inactivation, and sequestration of jasmonates, among other processes. The Jasmonate Biochemical Pathway provides an overview of the growing jasmonate family, and new members will be included in future versions of the Connections Map.
Resumo:
Background: With increasing computer power, simulating the dynamics of complex systems in chemistry and biology is becoming increasingly routine. The modelling of individual reactions in (bio)chemical systems involves a large number of random events that can be simulated by the stochastic simulation algorithm (SSA). The key quantity is the step size, or waiting time, τ, whose value inversely depends on the size of the propensities of the different channel reactions and which needs to be re-evaluated after every firing event. Such a discrete event simulation may be extremely expensive, in particular for stiff systems where τ can be very short due to the fast kinetics of some of the channel reactions. Several alternative methods have been put forward to increase the integration step size. The so-called τ-leap approach takes a larger step size by allowing all the reactions to fire, from a Poisson or Binomial distribution, within that step. Although the expected value for the different species in the reactive system is maintained with respect to more precise methods, the variance at steady state can suffer from large errors as τ grows. Results: In this paper we extend Poisson τ-leap methods to a general class of Runge-Kutta (RK) τ-leap methods. We show that with the proper selection of the coefficients, the variance of the extended τ-leap can be well-behaved, leading to significantly larger step sizes.Conclusions: The benefit of adapting the extended method to the use of RK frameworks is clear in terms of speed of calculation, as the number of evaluations of the Poisson distribution is still one set per time step, as in the original τ-leap method. The approach paves the way to explore new multiscale methods to simulate (bio)chemical systems.