980 resultados para biochars, lithium-sulfur batteries, microporous structure, bamboo carbon–sulfur composites


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Li-ion battery has for several years been at the forefront of powering an ever-increasing number of modem consumer electronic devices such as laptops, tablet PCs, cell phones, portable music players etc., while in more recent times, has also been sought to power a range of emerging electric and hybrid-electric vehicle classes. Given their extreme popularity, a number of features which define the performance of the Li-ion battery have become a target of improvement and have garnered tremendous research effort over the past two decades. Features such as battery capacity, voltage, lifetime, rate performance, together with important implications such as safety, environmental benignity and cost have all attracted attention. Although properties such as cell voltage and theoretical capacity are bound by the selection of electrode materials which constitute its interior, other performance makers of the Li-ion battery such as actual capacity, lifetime and rate performance may be improved by tailoring such materials with characteristics favourable to Li+ intercalation. One such tailoring route involves shrinking of the constituent electrode materials to that of the nanoscale, where the ultra-small diameters may bestow favourable Li+ intercalation properties while providing a necessary mechanical robustness during routine electrochemical operation. The work detailed in this thesis describes a range of synthetic routes taken in nanostructuring a selection of choice Li-ion positive electrode candidates, together with a review of their respective Li-ion performances. Chapter one of this thesis serves to highlight a number of key advancements which have been made and detailed in the literature over recent years pertaining to the use of nanostructured materials in Li-ion technology. Chapter two provides an overview of the experimental conditions and techniques employed in the synthesis and electrochemical characterisation of the as-prepared electrode materials constituting this doctoral thesis. Chapter three details the synthesis of small-diameter V2O5 and V2O5/TiO2 nanocomposite structures prepared by a novel carbon nanocage templating method using liquid precursors. Chapter four details a hydrothermal synthesis and characterisation of nanostructured β-LiVOPO4 powders together with an overview of their Li+ insertion properties while chapter five focuses on supercritical fluid synthesis as one technique in the tailoring of FeF2 and CoF2 powders having potentially appealing Li-ion 'conversion' properties. Finally, chapter six summarises the overall conclusions drawn from the results presented in this thesis, coupled with an indication of potential future work which may be explored upon the materials described in this work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

<p>A lack of suitable high-performance cathode materials has become the major barrier to their applications in future advanced communication equipment and electric vehicle power systems. In this paper, we have developed a layer-by-layer self-assembly approach for fabricating a novel sandwich nanoarchitecture of multilayered LiV<sub>3</sub>O<sub>8</sub> nanoparticle/graphene nanosheet (M-nLVO/GN) hybrid electrodes for potential use in high performance lithium ion batteries by using a porous Ni foam as a substrate. The prepared sandwich nanoarchitecture of M-nLVO/GN hybrid electrodes exhibited high performance as a cathode material for lithium-ion batteries, such as high reversible specific capacity (235 mA h g<sup>-1</sup> at a current density of 0.3 A g<sup>-1</sup>), high coulombic efficiency (over 98%), fast rate capability (up to a current density of 10 A g<sup>-1</sup>), and superior capacity retention during cycling (90% capacity retention with a current density of 0.3 A g<sup>-1</sup> after 300 cycles). Very significantly, this novel insight into the design and synthesis of sandwich nanoarchitecture would extend their application to various electrochemical energy storage devices, such as fuel cells and supercapacitors.</p>

Relevância:

100.00% 100.00%

Publicador:

Resumo:

<p>A novel strategy for the controlled synthesis of 2D MoS&lt;inf&gt;2&lt;/inf&gt;/C hybrid nanosheets consisting of the alternative layer-by-layer interoverlapped single-layer MoS&lt;inf&gt;2&lt;/inf&gt; and mesoporous carbon (m-C) is demonstrated. Such special hybrid nanosheets with a maximized MoS&lt;inf&gt;2&lt;/inf&gt;/m-C interface contact show very good performance for lithium-ion batteries in terms of high reversible capacity, excellent rate capability, and outstanding cycling stability.</p>

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Porous tin oxide nanotubes were obtained by vacuum infiltration of tin oxide nanoparticles into porous aluminum oxide membranes, followed by calcination. The porous tin oxide nanotube arrays so prepared were characterized by FE-SEM, TEM, HRTEM, and XRD. The nanotubes are open-ended, highly ordered with uniform cross-sections, diameters and wall thickness. The tin oxide nanotubes were evaluated as a substitute anode material for the lithium ion batteries. The tin oxide nanotube anode could be charged and discharged repeatedly, retaining a specific capacity of 525 mAh/g after 80 cycles. This capacity is significantly higher than the theoretical capacity of commercial graphite anode (372 mAh/g) and the cyclability is outstanding for a tin based electrode. The cyclability and capacities of the tin oxide nanotubes were also higher than their building blocks of solid tin oxide nanoparticles. A few factors accounting for the good cycling performance and high capacity of tin oxide nanotubes are suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The local structure of an ion-conducting glass with nominal composition 50B(2)O(3)-10PbO-40LiF has been investigated by complementary (7)Li, (11)B, (19)F, and (207)Pb single- and double-resonance experiments. The results give insight into the structural role of the lithium fluoride additive in borate glasses: (1) LiF is seen to actively participate in the network transformation process contributing to the conversion of three- into four-coordinate boron units, as shown by (11)B single-resonance as well as by (11)B{(19)F} and (19)F{(11)B} double-resonance experiments. (2) (19)F signal quantification experiments suggest substantial fluoride loss, presumably caused by formation of volatile BF(3). A part of the fluoride remains in the dopant role, possibly in the form of small LiF-like cluster domains, which serve as a mobile ion supply. (3) The extent of lithium-fluorine and lead-fluorine interactions has been characterized by (7)Li{(19)F} and (207)Pb{(19)F} REDOR and SEDOR experiments. On the basis of these results, a quantitative structural description of this system has been developed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The addition of lithium salts to ionic liquids causes an increase in viscosity and a decrease in ionic mobility that hinders their possible application as an alternative solvent in lithium ion batteries. Optically heterodyne-detected optical Kerr effect spectroscopy was used to study the change in dynamics, principally orientational relaxation, caused by the addition of lithium bis(trifluoromethylsulfonyl)imide to the ionic liquid 1-buty1-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Over the time scales studied (1 ps-16 ns) for the pure ionic liquid, two temperature-independent power laws were observed: the intermediate power law (1 ps to similar to 1 ns), followed by the von Schweidler power law. The von Schweidler power law is followed by the final complete exponential relaxation, which is highly sensitive to temperature. The lithium salt concentration, however, was found to affect both power laws, and a discontinuity could be found in the trend observed for the intermediate power law when the concentration (mole fraction) of lithium salt is close to chi(LiTf(2)N) = 0.2. A mode coupling theory (MCT) schematic model was also used to fit the data for both the pure ionic liquid and the different salt concentration mixtures. It was found that dynamics in both types of liquids are described very well by MCT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, nickel foams with an open cell microporous structure were fabricated by the so-called space-holding particle sintering method, which included the adding of a particulate polymeric material (PMMA). The average pore size of the nickel foams approximated 10.5 &mu;m; and the porosity ranged from 70 % to 80 %. The porous characteristics of the nickel foams were observed using scanning electron microscopy and the mechanical properties were evaluated using compressive tests. For comparison, nickel foams with an open-cell macroporous structure (pore size approximately 1.3 mm) were also presented. Results indicated that the nickel foams with a microporous structure possess enhanced mechanical properties than those with a macroporous structure.<br />

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A MoO<sub>3</sub>-carbon nanocomposite was synthesized from a mixture of MoO<sub>3</sub> and graphite by a controlled ball milling procedure. The as-prepared product consists of nanosized MoO<sub>3</sub> particles (2-180 nm) homogeneously distributed in carbon matrix. The nanocomposite acts as a high capacity anode material for lithium-ion batteries and exhibits good cyclic behavior. Its initial capacity exceeds the theoretical capacity of 745 mA h g<sup>-1</sup> in a mixture of MoO<sub>3</sub> and graphite (1:1 by weight), and the stable capacity of 700 mA h g<sup>-1</sup> (94% of the theoretical capacity) is still retained after 120 cycles. The electrode performance is linked with the unique nanoarchitecture of the composite and is compared with the performance of MoO<sub>3</sub>-based anode materials reported in the literature previously (nanoparticles, ball milled powders, and carbon-coated nanobelts). The high value of capacity and good cyclic stability of MoO<sub>3</sub>-carbon nanocomposite are attractive in respect to those of the reported MoO<sub>3</sub> electrodes.<br />

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic ionic plastic crystals (OIPCs) are attractive as solid-state electrolytes for electrochemical devices such as lithium-ion batteries and solar and fuel cells. OIPCs offer high ionic conductivity, nonflammability, and versatility of molecular design. Nevertheless, intrinsic ion transport behavior of OIPCs is not fully understood, and their measured properties depend heavily on thermal history. Solid-state magnetic resonance imaging experiments reveal a striking image contrast anisotropy sensitive to the orientation of grain boundaries in polycrystalline OIPCs. Probing triethyl(methyl)phosphonium bis(fluorosulfonyl)imide (P1222FSI) samples with different thermal history demonstrates vast variations in microcrystallite alignment. Upon slow cooling from the melt, microcrystallites exhibit a preferred orientation throughout the entire sample, leading to an order of magnitude increase in conductivity as probed using impedance spectroscopy. This investigation describes both a new conceptual window and a new characterization method for understanding polycrystalline domain structure and transport in plastic crystals and other solid-state conductors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Through comparative studying on LiFePO4/C preparation process of adding carbon source in precursor and pre-sintered material, marked as LFP-1 (in-situ carbon coating) and LFP-2 respectively, by means of C-S test, XRD, SEM, BET, Raman, the effects of carbon content, morphology, particle size and surface carbon structure on the electrochemical performance of LiFePO4/C cathodes were investigated. SEM images showed that particle sizes of LFP-1 and LFP-2 are about 10&mu;m and 100nm respectively. The EIS and galvnostatic charge-discharge tests indicated that LFP-1 has lower charge transfer resistance (Rct), better rate and cycle performance than that of LFP-2, which can be attributed to the different microstructure and the higher degree of graphitized carbon of LiFePO4/C. Raman spectroscopic analysis showed that the ratio of the ID/IG and Asp3/Asp2 of LFP-1 is lower that of LFP-2, which means the degree of graphitized carbon of LFP-1 is higher than that of LEP-2. These results have important significance for improving the overall performance of olivine cathode materials for lithium ion batteries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

LiFe1-xMnxPO4/C composite materials as cathode materials in Li-ion batteries have been synthesised and their electrochemical properties have been investigated. The samples were synthesised by using high energy ball milling of commercially available precursors (Li2C2O4, FeC2O4.2H2O, MnC2O4.2H2O, NH4H2PO4) and then heated at 600&deg;C. The morphology and structure of the heated samples were analysed by means of SEM and X-ray diffraction. The olivine structure of the LiFe1-xMnxPO4/C composite was obtained. A slight shift of the peaks to smaller 2&theta; angles with the increasing Mn/Fe ratios is observed due to the increase in lattice parameters. The influence of different Mn/Fe ratios on electrical and electrochemical performances were studied by charge-discharge and cyclic voltammetry (CV) testing. The CV curves of the pure LiFePO4 and LiMnPO4 show the expected Fe2+/Fe3+ peak around 3&middot;5 V and Mn2+/Mn3+ peak around 4&middot;1 V, respectively. The addition of manganese increases the discharge voltage from 3&middot;5 to 4&middot;1 V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitrogen doped SnO2 polycrystalline nanostructures were produced from commercial SnO powders in a new system that combines a low-temperature plasma with heating. The method has the potential to improve the initial efficiency and the cycling performance of SnO2 anodes in Li-ion batteries. With this system, the temperature of the SnO to SnO2 conversion was lowered from 430 to 320 &deg;C, up to 5 at% of doped nitrogen was detected and a nano-scale polycrystalline structure was observed in the product. Combining heat and low-pressure plasma is a promising approach for the production and treatment of enhanced energy storage materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon coated LiFe0&middot;4Mn0&middot;6PO4 (LiFe0&middot;4Mn0&middot;6PO4/C) was synthesised using high energy ball milling and annealing processes. The starting materials of Li2C2O4, FeC2O4.2H2O, MnC2O4.2H2O, NH4H2PO4 were firstly milled for 40 h, and followed by further milling for 5 h after adding glucose solution. The milled sample was heated at different temperatures (550, 600, 650 and 700&deg;C) for 10 h to produce LiFe0&middot;4Mn0&middot;6PO4/C composites. The structure and morphology of the samples were investigated using X-ray diffraction, field emission scanning electron microscopy, and high resolution electron microscopy. The phase of samples annealed at 550 and 600&deg;C mainly consists of olivine type LiFePO4, but a small amount of Fe2P impurity phase is formed in the samples annealed at 650 and 700&deg;C. Electrochemical analysis results show that LiFe0&middot;4Mn0&middot;6PO4/C synthesised at 600&deg;C exhibits the best performance with the initial discharge capacity of 128 mAh g-1 at 0&middot;1 C, and 109 mAh g-1 at 1 C after 500 cycles. The LiFe0&middot;4Mn0&middot;6PO4/C exhibits excellent electrochemical properties for high energy density lithium ion batteries.