957 resultados para ballot counting
Resumo:
We present tools for rapid and quantitative detection of sediment lamination. The BMPix tool extracts color and gray-scale curves from images at pixel resolution. The PEAK tool uses the gray-scale curve and performs, for the first time, fully automated counting of laminae based on three methods. The maximum count algorithm counts every bright peak of a couplet of two laminae (annual resolution) in a smoothed curve. The zero-crossing algorithm counts every positive and negative halfway-passage of the curve through a wide moving average, separating the record into bright and dark intervals (seasonal resolution). The same is true for the frequency truncation method, which uses Fourier transformation to decompose the curve into its frequency components before counting positive and negative passages. We applied the new methods successfully to tree rings, to well-dated and already manually counted marine varves from Saanich Inlet, and to marine laminae from the Antarctic continental margin. In combination with AMS14C dating, we found convincing evidence that laminations in Weddell Sea sites represent varves, deposited continuously over several millennia during the last glacial maximum. The new tools offer several advantages over previous methods. The counting procedures are based on a moving average generated from gray-scale curves instead of manual counting. Hence, results are highly objective and rely on reproducible mathematical criteria. Also, the PEAK tool measures the thickness of each year or season. Since all information required is displayed graphically, interactive optimization of the counting algorithms can be achieved quickly and conveniently.
Resumo:
A proper allocation of resources targeted to solve hunger is essential to optimize the efficacy of actions and maximize results. This requires an adequate measurement and formulation of the problem as, paraphrasing Einstein, the formulation of a problem is essential to reach a solution. Different measurement methods have been designed to count, score, classify and compare hunger at local level and to allow comparisons between different places. However, the alternative methods produce significantly reach different results. These discrepancies make decisions on the targeting of resource allocations difficult. To assist decision makers, a new method taking into account the dimension of hunger and the coping capacities of countries, is proposed enabling to establish both geographical and sectoral priorities for the allocation of resources.
Resumo:
A proper allocation of resources targeted to solve hunger is essential to optimize the efficacy of actions and maximize results. This requires an adequate measurement and formulation of the problem as, paraphrasing Einstein, the formulation of a problem is essential to reach a solution. Different measurement methods have been designed to count, score, classify and compare hunger at local level and to allow comparisons between different places. However, the alternative methods reach significantly different results. These discrepancies make decisions on the targeting of resource allocations difficult. To assist decision makers, a new method taking into account the dimension of hunger and the coping capacities of countries is proposed enabling to establish both geographical and sectoral priorities for the allocation of resources
Resumo:
Automatic visual object counting and video surveillance have important applications for home and business environments, such as security and management of access points. However, in order to obtain a satisfactory performance these technologies need professional and expensive hardware, complex installations and setups, and the supervision of qualified workers. In this paper, an efficient visual detection and tracking framework is proposed for the tasks of object counting and surveillance, which meets the requirements of the consumer electronics: off-the-shelf equipment, easy installation and configuration, and unsupervised working conditions. This is accomplished by a novel Bayesian tracking model that can manage multimodal distributions without explicitly computing the association between tracked objects and detections. In addition, it is robust to erroneous, distorted and missing detections. The proposed algorithm is compared with a recent work, also focused on consumer electronics, proving its superior performance.
Resumo:
The synapses in the cerebral cortex can be classified into two main types, Gray’s type I and type II, which correspond to asymmetric (mostly glutamatergic excitatory) and symmetric (inhibitory GABAergic) synapses, respectively. Hence, the quantification and identification of their different types and the proportions in which they are found, is extraordinarily important in terms of brain function. The ideal approach to calculate the number of synapses per unit volume is to analyze 3D samples reconstructed from serial sections. However, obtaining serial sections by transmission electron microscopy is an extremely time consuming and technically demanding task. Using focused ion beam/scanning electron microscope microscopy, we recently showed that virtually all synapses can be accurately identified as asymmetric or symmetric synapses when they are visualized, reconstructed, and quantified from large 3D tissue samples obtained in an automated manner. Nevertheless, the analysis, segmentation, and quantification of synapses is still a labor intensive procedure. Thus, novel solutions are currently necessary to deal with the large volume of data that is being generated by automated 3D electron microscopy. Accordingly, we have developed ESPINA, a software tool that performs the automated segmentation and counting of synapses in a reconstructed 3D volume of the cerebral cortex, and that greatly facilitates and accelerates these processes.
Resumo:
A Kuhnian approach to research assessment requires us to consider that the important scientific breakthroughs that drive scientific progress are infrequent and that the progress of science does not depend on normal research. Consequently, indicators of research performance based on the total number of papers do not accurately measure scientific progress. Similarly, those universities with the best reputations in terms of scientific progress differ widely from other universities in terms of the scale of investments made in research and in the higher concentrations of outstanding scientists present, but less so in terms of the total number of papers or citations. This study argues that indicators for the 1% high-citation tail of the citation distribution reveal the contribution of universities to the progress of science and provide quantifiable justification for the large investments in research made by elite research universities. In this tail, which follows a power low, the number of the less frequent and highly cited important breakthroughs can be predicted from the frequencies of papers in the upper part of the tail. This study quantifies the false impression of excellence produced by multinational papers, and by other types of papers that do not contribute to the progress of science. Many of these papers are concentrated in and dominate lists of highly cited papers, especially in lower-ranked universities. The h-index obscures the differences between higher- and lower-ranked universities because the proportion of h-core papers in the 1% high-citation tail is not proportional to the value of the h-index.